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1. EXECUTIVE SUMMARY

The research investigations contained in this report are concerned with
thermoelastic behavior of cracked composite materials and with analysis of damage
formation in the forms of cracks and debonding of the interface between the constituents.
In the fifst case the damage is geometrically defined , for example in the form of crack
distributions or degraded interface, and the goal is to evaluate the effect of such damage
on the stiffness and the thermal expansion coefficients (TEC) of the composite material. In
the second case the goal is to predict the crack density which is produced within a certain
composite by specified load and temperature inputs and to evaluate load/temperature
inputs which produce complete debonding of the constituents.

There are five parts as listed in the table of contents. The first three are concerned
with evaluation of thermoelastic properties and the last two are concerned with the
evaluation of damage . These investigations will now be discussed sequentially.

Cracked Laminates with Imperfect Interlaminar Interface

This work deals with analysis of laminates with imperfect interlaminar interface.
Such an imperfect interface models the case when there is a thin layer in-between the plies
of the laminate, a situation encountered when there are oxidation protection layers, or
when the interface has suffered damage for whatever reasons. The mathematical
description of such imperfection is a discontinuity of displacement which is related to the
interface traction. In our case the relation between interface displacement discontinuity
and traction is linear. Such a relation is called an imperfect interface condition.

It should be noted that in the common case of a symmetric laminate subjected to
membrane loads in it’s plane the imperfect interface has no effect , neither on internal
stresses nor on the laminate thermoplastic properties. But the present analysis shows that
“the situation is entirely different for a laminate which has intralaminar cracks. The method
of analysis is an extension of a previous one which dealt with analysis of cracked laminates
with perfect interface [1]. This analysis was based on an application of the classical
variational principle of minimum complementary energy. This minimum principle has been
extended to the case of imperfect interface in [2] and this extended principle has been
applied for the present situation.

The analysis shows that for ceramic composite cross-ply laminates interface
imperfection has only a small effect on the in-plane Young’s modulus and TEC of the
composite but has a significant effect on the laminate shear modulus and the interlaminar
shear and normal stresses.

Differential Scheme for Effective Thermoelastic Properties of Cracked Composite
Materials.

The most common damage in composite materials is in the form of microcracks.
The research described in paragraph 1 above was concerned with microcracks through
laminate ply thickness. Another very important problem is the effect of matrix microcracks
in a unidirectional fiber composite or in a particulate composite. The size of such micro
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cracks is of the order of fiber or particle diameters. Essentially, such a cracked composite
is a three phase material consisting of matrix, reinforcement (fibers or particles) and
cracks. the goal of the research is to evaluate the effect of such microcracks on
thermoelastic properties, that is stiffness and TEC. There exists a very extensive literature
on evaluation of thermoelastic properties of reinforced materials and of cracked materials.
The difficulty of the problem is demonstrated by the fact that there exists almost no

literatiire on evaluation of properties of cracked composites of the kind described.

The problem can be solved exactly only in the case when the composite is
described by a matrix containing a small amount of non interacting fibers/particles and
cracks. But such a problem is only of academic interest. It is therefore necessary to resort
to approximate methods. Two well known methods of approximation are the self
consistent scheme (SCS) and the differential scheme (DS). The SCS has actually been
applied to the problem under consideration ,however , it is well known that the SCS
results for cracked homogeneous materials gives unreliable results in that it seriously
underestimates the stiffness. It can therefore not be expected to yield reliable results for
cracked composites. On the other hand the DS results for cracked homogeneous materials
are much more acceptable and also agree with experiments performed. It appeared
therefore reasonable to apply this method for the present problem.

The basic premise of the DS is that when a small number of inhomogeneities
(fibers, particles,cracks) are added within a composite then their incremental effect is given
by dilute concentration theory with respect to the current properties of the composite. The
DS becomes a quite accurate method when the added inhomogeneities are by an order of
magnitude larger than the ones previously added.

The present investigation has resulted in evaluation of effective elastic moduli and
TEC of a composite containing particles or fibers and matrix cracks. To the best of our
knowledge this the first time that the TEC of this kind of composite has been analyzed.

Macro-Residual Strains due to Cyclic Loading of Composites

It is well known that whén ceramic composites are subjected to load cycles, at
room temperature, macro-residual strains remain. Such residual strains are commonly
observed in metals which have been loaded into a plastic state and then unloaded.
However, ceramic composites are elastic-brittle and thus the phenomenon requires
explanation . It is shown that such residual strains are formed because of the residual
stress state in the composite which is due to the fact that the composite is stress free at it’s
high formation temperature and thus develops residual stress due to cooldown. If the
loading part of the load cycle produces internal cracks then the residual stress state
changes. The stresses due to the load disappear on unloading but the composite is now in
a state of different residual stress and strain and therefore the average or macro-strain has
changed after unloading. The difference between the average strain before loading and
after unloading is the measured macro-residual strain.

The fundamental novel result found in this investigation is that the macro-residual
strain can be expressed in terms of the difference between the effective TEC after and
before the loading cycle. Furthermore, this explains the physical phenomenon observed
that after many load cycles the residual strain will achieve a limit value which cannot be
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increased by additional load cycles.. The reason for this is that crack density cannot grow
indefinitely and at some time crack saturation will take place, which implies that no
additional cracks can be introduced into the material. Now the effective TEC are functions
of the crack geometry and thus at crack saturation the effective TEC assumes a limit
value. Therefore, the macro-residual strain also assumes a limit value since it is uniquely
determined by the effective TEC.

Finite Thermoelastic Fracture Criterion with Application to Laminate Cracking
Analysis

The origin of classical fracture mechanics is with a differential energy balance. The
question posed is : what is the load which permits differential extension of a crack without
load increase ? The answer is given by an energy balance in which the change in external
work due to crack extension is equated to the internal energy change plus the energy
needed to open up the crack. The concern is with single cracks or perhaps with a number
of cracks at well known locations within a homogeneous material.

In composite materials in general, and in fiber composite laminates in particular,
the formation of damage consists of the accumulation of a multitude of interacting cracks.
It is impossible to follow the differential extensions of such cracks which appear suddenly
and at unspecified locations. Instead we have what may be called fracture events which
may be assumed to occur spontaneously. Therefore a different approach has been
developed which defines a critical load as one which permits two simultaneous different
crack geometry’s which differ by finite fracture surface. Therefore the approach may be
termed finite fracture mechanics.

Another consideration which is peculiar to composites is that there are residual
stresses which are a result of cooldown after manufacturing at high temperature and
constituent TEC mismatch. Thus load produces stresses which must be added to the
residual stresses.

We have constructed a criterion for evaluation of the critical load which permits
the spontaneous appearance of finite new fracture surface. This criterion is expressed
solely in terms of the stress fields before and after the appearance of the new fracture
surface. Moreover, it has been shown that the critical energy release which is needed to
produce the new fracture surface can be bounded from above by use of admissible stress
fields instead of the actual stress fields.

This theory has been applied to prediction of intralaminar crack densities in
laminates which are cooled down from a stress-free temperature and are subsequently
subjected to mechanical load. For this purpose a novel variational method for analysis of
thermoplastic stresses in laminates has been constructed. The loads which initiate
intralaminar cracking have been evaluate for various cross-ply laminates .Good agreement
with experimental results has been obtained.

Interface Debond Analysis

A possible failure mechnism in composite materials is debonding of the interface
between the constituents. If this happens the reinforcing fibers or inclusions are essentially




replaced by voids and the composite material is replaced by a porous material. A porous
material is weaker than the matrix and cannot serve as a structural material.

The debonding process consists of the growth of interface cracks which separate
the constituents. Analysis of such a process is an impossible task for even the partial
debonding of a single inclusion isolated in an infinite matrix is a very formidable problem.
Here we consider a different problem : what is the load/ temperature combination which
produces debonding of the entire interface ? This problem can be treated in relatively
simple fashion by considering it in terms of the finite fracture criterion theory discussed in
par. 4, above. It is assumed that the debonding of the interface is a spontaneous fracture
event. Then the the two comparison stress states are the stress in the composite for perfect
bond and the stress for complete debonding, i.e. a porous material. These stress fields can
be evaluated for suitable models of a composite. In the present study we have chosen the
model known by the name Generalized Self Consistent Scheme.

The analysis produces a temperature dependent debond failure surface which is
expressed in terms of applied average stress and temperature. The validity of the failure
surface is limited by the need to assure that after debonding particles do not penetrate the
matrix. The theory has been applied to evaluation of debond failure surfaces of a
unidirectional fiber composite which is loaded transversely with temperature change.
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Cracked Laminates with Imperfect Interlaminar

Interface

1. Introduction

The present work is concerned with the effect of intralaminar crack (IC)
accumulation on the thermomechanical properties of fiber composite lam-
inates and the resulting internal stress distributions. Such cracks develop
in the matrix along fibers due to load or temperature change. They are
thus parallel crack distributions within the layers which propagate very
rapidly until the laminate edges. Therefore,the formation of a typical IC is
not viewed as a crack propagation phenomenon but as a fracture event
which occurs instantaneously. Thus, the concern is with a laminate which
contains IC distributions which are quantitatively described by crack den-
sity, the number of IC per unit length. The problems are then to determine
deterioration of thermoelastic peoperties in terms of crack density, lami-
nate internal geometry and ply properties, internal stresses resulting from
crack accumulation and their relation to failure mechanisms, and more am-
bitiously - to predict crack demsity due to load or temperature.




The problems outlined have been the subject of a large number of re-
search papers over the last 15 years. There are two major approaches :
the first may be termed the micromechanics approach and the second, the
continuum damage approach. In the first approach it is attempted to car-
Ty out analysis recognizing the cracks as defects on which the tractions
must vanish. The advantage of this approach is physical realism and in-
formation about internal (micro) stresses, which is important for failure
considerations. The disadvantage is analytical difficulty and for this reason
the micromechanics approach has to date been confined to cross-plies.

In the second approach effect of IC on a layer is modeled by an abstract
damage function whose form is not unique and which invariably contains
unknown coefficients. The disadvantage is that such coefficients must be
backed out from experiment on the laminate and it is not clear whether
such coefficients qualify as ply material parameters or are fitting parameters
which change from laminate to laminate. The advantage of the approach
is that it can be applied to practical laminates, more complicated than
cross-plies.

The present work is concerned with the micromechanics approach for
cross-ply laminates. Review of the voluminous literature is not within the
present scope. It is recalled that initial analytical efforts were based on
the shear-lag approximation e.g. Reifsnider and Jamison (1982),Laws and
Dvorak (1988). This method requires the determination of a so-called shear
lag parameter on the basis of the fracture toughness of the ply materials.
Analysis in terms of a displacement formulation represented, arbitrarily,
by hyperbolic functions was given by Tsai et al. (1990). Work of similar
nature with the choice of different form displacement functions has been
done by Lee et al. (1990). A variational method based on the principle of
minimum complementary energy has been developed by Hashin (1985) with
application to stiffness reduction and stress analysis of cross-ply laminates
with one layer cracked. This has been extended to the case of all layers
cracked in Hashin (1987) and to evaluation of thermal expansion coefficients
in Hashin (1988). The only assumption made in the variational anslysis is
that-in plane stresses in the ply are constant over the thickness. Analysis
based on similar assumptions has been given by McCartney (1992). Analysis
for more general in-plané stresses has been given by Varna and Berglund
(1994). Nairn et al. (1993) have successfully used the variational analysis
for prediction of crack density resulting from in plane loading of cross-ply
laminates.

The purpose of the work presented here is to extend the variational
analysis to the evaluation of thermoelastic properties and internal stresses
of cross-ply laminates when there is imperfect interlaminar bond between
the layers.




2. Thermoelastic Extremum Principle for Imperfect Interface

Perfect interface between two solid constituents implies continuity of trac-
tion and-displacement vectors at the interface. When the interface displace-
ment -vector is discontinous, while the traction vector remains continuous
for reasons of equilibrium, the interface is called imperfect. Let the dis-
placement jump at interface S12 be denoted

[u] = u? — ul. (1)
Then the simplest imperfect interface condition is
T. = Dy, [un]
T, = D, [u,] (2)
T; = D: [ut]s

where n,s,t are normal and tangential components of the interface normal
n, assumed here as pointing into phase 2, and Dy, D,, D; are spring constant
type interface parameters. With respect to a fixed cartesian coordinate
system, (2) assumes the forms

T=D.[u] [u=RT R= D, 3)

where the Cartesian components of D and its inveise R now vary along the
interface. It has been shown in Hashin (1990) that the effect of a thin and
very compliant interphase between constituents can actually be expressed
in the form (2) and that the interface parameters can be expressed in terms
of interphase thickness and stiffness.

In the variational analysis to be employed here the generalization of
the extremum principle of minimum complementary energy for imperfect
interface conditions will be needed, Hashin (1992). This will here be further
generalized to the thermoelastic case and will be stated for the case when
tractions are prescribed over the entire external surface S. Let o be the
actual stress field and & an admissible stress field for a body with surface
load T (S) and imperfect interface Sy;. Define

YK = s0:8:0

W = 6:S:07, (4)

where S is the compliance tensor. Here W is the stress energy density while
W has no physical meaning. Next define the functionals

U = [y [WHaw §-c,(62/20,)]dV + 1 f5, T : R:TdS

Dt d | 1=t

i W L (5)
T = fo|[W+ed0-c(62/20)] aV +} s, T:R:TdS
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Here « is the thermal expansion tensor, ¢, the specific heat at constant
pressure and @ is the (known) temperature relative to a reference tem-

_ perature 6,. Then the thermoelastic principle of minimum complementary
energy is expressed by the inequality

U>U, (6)

equality occurring if, and onlyif,5 =0 .

For composite materials applications it is of importance to consider the
case of constant temperature and so-called homogeneous traction boundary
conditions which are defined as

T(5) = e°n(S) (7)

Where o is a constant stress tensor. Then o is the average stress tensor
and it can be shown that the first of (5) is, rigorously

U= -;— [a-° :S*:06°t+a*. 0% — c; (02/200)] 14 (8)
where S* ,o* and ¢} are the effective elastic compliance tensor, thermal
expansion tensor and specific heat, respectively.

In the following the variational principle will be exploited to analyze
approximately thermo-elastic properties and internal stresses in cracked
laminates.

3. Cross-Ply Laminates with One Ply Family Cracked

The case to be considered here is a [02,,900], laminate in which either the 0°
or the 900plies are cracked, fig. 1a. The variational method will be employed
to obtain strict lower bounds for the effective Young’s modulus E7 and the
effective shear modulus G%, and approximations for the effective thermal
expansion coefficient o} and internal stresses, for the case of imperfect
interlaminar interface as defined by a damaged interphase between plies.
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Figure 1. Cracked laminate

3.1. EFFECTIVE YOUNG’S MODULUS

Let it be assumed that the laminate is sub jected to a constant tensile
membrane force N, and let the o, stresses in the layers of the uncracked
laminate be denoted o7 and o3, respectively, where from now on the label
1 refers to the 90° ply and 2 refers to the 0° ply. As is well known, these
stresses are constant throughout the layers . The actual stress state in the
cracked laminate is described by generalized plane strain in reference to the
y axis, and therefore all stresses are functions of x,z only. It is at present
assumed that only the 90° ply is cracked. The admissible stress state in the
cracked laminate will be ¢onstructed on the basis of the simplification that
the o, stresses are functions of x and not of z. Thus these stresses may be
written in the form

" o) = o1 — du(a)]
(9)

o) = o3[1 ~ ¢2(=)]

where ¢; and ¢, are unknown functions. These functions are, however,
related since the stress pairs oy, oz and (9) are each in equilibrium with
the same N_.. Therefore

oytidy + oatadr =0

Consider a typical region between two adjacent cracks at distance 2a, fig.1b.
It is emphasized that the cracks do not have to be equidistant. For example,
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the interdistance 2a could be a random variable. For a typical intercrack
region as shown in fig.1b the admissible stress field is constructed by in-
tegration of the two dimensional equations of equilibrium in the xz plane
with the stresses (9). The integration produces residual unknown function-
s which are determined by satisfaction of traction continuity conditions
at layer interfaces and zero traction conditions on the external laminate
surface. The remaining admissible stresses are then

o = o¢/(z)z

oD = 014"(z)(hty — 22)/2
o = (a/N¢(=)h~2)
o2 = (a1/NP"(2)(h—2)*/2

where ¢ = ¢1 , A = t2/t; and prime superscript.denotes z differentiation.
These stresses have already been given in Hashin (1985). On the crack

surfaces or:(clz) and og-,) must vanish and therefore

fa)=1 ¢(da)="0 (11)

The aggregate of the stress fields (9-11) for all intercrack regions are the
admissible stress field. The stress energy densities for the layers 1 and 2
are: '

(10)

ow; = o /By —2086Qur/Br + oW 1Er + o8 1Gr

12
e = o /a2 e DorfEat T [Er +oT (G
where the elastic ply properties in (12) are: B4, v4 - axial Young’s modulus
and associated Poisson’s ratio ; Er, vr - transverse Young’s modulus and

associated Poisson’s ratio ; G4, Gr - axial and transverse shear moduli.
For reasons of symmetry it is sufficient to evaluate the complementary
energy functional for the regions —a, <z < ap; 0<y<1; 0<z<h
Then for such a region and for an isothermal state, the second of (5) assumes

the form

Uo, = [* [&Widzds + [ [} Wadzdz+t
% —a;,. UZz(zv t1)/Dn+ aﬁz(z,tl)/D,) dz

where D,, and D, are normal and shear interface parameters, and for the

entire laminate _
Uc =Y Uc, (14)

(13)
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The actual complementary energy is given for the present case by
Uo =0 V/2E: ¢°= Nu[2h (15)

where V is the volume of the entire cracked laminate of thickness 1 in y
direction. Introduction of the admissible stress field with functions ¢,, for
each region into (14) results, according to the principle of minimum com-
plementary energy, in an upper bound on (15). The lowest upper bound is
obtained by minimizing the resulting functional with respect to the func-
tions ¢ . This is a standard problem in the calculus of variations resulting
in Euler equations and boundary conditions for the minimizing functions

which have the form
d4¢m &P ddm
F72] +p ¢z qp= ¢ ( Pm) 3 dt (=tm) ( )
where

t=zfty pm=amft1i P=(Co2— C11)/C22 q=Coo/C22

Coo = 1/Er+1/AE4 Coz= (A + 2)— 3
Cypr = (A + ].)(3A2 + 12\ + 8)/60ET + A2/4Dnt1 (17)
Cu = Y1/Gr+1/XG4)+1/Dsty

Evaluation of the complementary energy functional in terms of the func-
tions ¢, as was done in Hashin(1985), introduction of the result into the
complementary inequality (6) with (15) as the actual complementary ener-
gy gives the result

* 0, (%1 2_?32__()((40)) _ _ds¢m
/m < 1B+ (ZP AL )= )

where the brackets denote average with respect to the random variable a,,,
half of the intercrack spacing. The form of x depends on the nature of the
roots of the characteristic equation of (16). When these roots are of the
form +(a + if3), where i = /=1 , then the solution of (16) is of the form

bm = AmCosh(af) cos(B€) + BmSinh(af) sin(B€) (19)

where the constants are determined by the boundary conditions in (16).
Then the associated Xy, is

Cosh(20py,) — cos(2Bpm)
asin(28pm) + BSinh(2apm) (20)

Xm = 2aﬁ(a2 + ﬂ2)
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If the roots are real, t1-1us of the form +a,+( ,then

¢m = AmCosh(af)+ BmCosh(B£)
— (21)
Xm = Tothlap)]a—CothiBr)]B

3.2. IMPERFECT INTERFACE MODEL

A physical interpretation of the interface parameters D, and D, has been
given in Hashin (1990). If there is a thin elastic isotropic interphase of
thickness t; between the phases, then

D, = (K, + %G;)/t" D, = D = Gi/ti (22)

where K; and G; are the bﬁlk and shear moduli of the interphase. It is
easily shown that if the interphase is orthotropic, with material axes n,s
and t , (22) becomes :

Dn = Cnn/ti Da = Gnn/ti Dt = Gnt/ti (23)

where C,,, is the normal stiffness and G, and Gy are shear moduli. The
first of (22,23) is strictly valid only when the interphase elastic moduli are
much smaller than those of the constituents, but there is no such restric-
tion with respect to D, and Dy. If the interphase moduli are of the order
of constituent moduli then the thin interphase effect is negligible and is
equivalent to a perfect interface with displacement continuity. Consider a
thin interphase in-between the layers of a cross-ply, fig.2. A relevant ex-
ample is an oxidation protection layer between the laminae of a ceramic
composite. Such a layer may develop many transverse cracks due to ther-
mal stresses produced by manufacturing cooldown, fig. 2. These cracks are
roughly orthogonal in fiber directions of the layers. In a ceramic fiber com-
posite laminate, for example a SiC matrix reinforced by graphite fibers, the
stiffness of the interphase layer is of the order of the stiffness of the layer
material. For large crack density in the layer the shear moduli decrease very
significantly, but not C,,,. Therefore such a cracked layer can be considered
as an interface which is perfect for normal contact , [u,] = 0, but is im-
perfect for shear. In that event the term in Co, equ.(17), containing D,,
is negligible.
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Figure 2. Laminate with damaged interphase

" 33. THERMAL EXPANSION

To evaluate the effective thermal expansion coefficient (TEC) of a cracked
laminate it is very convenient to use the Levin relation as has been done
for perfect interlaminar interface in Hashin (1988). For this purpose con-
sider any elastic composite which is sub jected to the homogeneous traction
boundary conditions (7) and let the internal stresses due this loading be
oM z). Denoting the local TEC (=) and the effective TEC o, the Levin
relation , Levin (1967), is expressed as

/Va.deV= a*.a'V (24)

Levin’s original derivation of (24) is based on displacement continuity, but
it may be shown that it remains valid for interface displacement continu-
ities which obey the relations (3) and therefore (24) may be employed in
the present case with the stresses (9-10) and the functions ¢m to give an ap-
proximate expression for the TEC. For the loading N, the only surviving
component of o in (7) is 0, = 0 as defined by (15). Then from (24)

L t h
a;‘maoV = / {/ ’ aT(JgC) + crg))dz +/ (chaSi) + aTag))dz] dz (25)
0 4] 5% *

where L is the length of the laminate of unit thickness in y direction. In-
sertion of the stresses into (25) with use of the boundary conditions of (16)
yields

g1 1
gol+ A

« _ .0
az.v_azz+

(aa—ar)<¢> (26)




-

10

where a2, is the TEC of the ancracked laminate, a4 and ar are the axial
and transverse TEC of the unidirectional fiber composite and < ¢ > is the

average of the random variable ¢, which is defined as

B oy = 5 [ dm(E)dE (27)
Also
ol a, (28)

3.4. EFFECTIVE SHEAR MODULUS

Let the cracked laminate shown in fig. 1 be subjected to constant shear
membrane load Ny, which defines the average applied shear stress

7° = Ny /2R (29)

In this case the laminate is in a state of antiplane stress with respect to the
y axis. Admissible stresses are defined as in Hashin (1985) by

o = P-9@E)] o =1¥(2)z

of) = PR+HE)] a4 =F¥E)(*R-2)

Then a variational optimization as done above and in Hashin (1985) yields
the results

(30)

Ym(€) = Cosh(u)/Cosh(ppm) 1 = prxaaocisaran; (31
L < GA
2 = 14 < Tanh(up) > [Ap < p >

In the case of equidis:tant cracks ¢, = @ , pm = aft;, and all of the
averages in all of the expressions above reduce to simple functions of p
which are defined by removal of the brackets.

3.5. STRESS ANALYSIS AND CRACK OPENING DISPLACEMENTS

The optimal functions ¢,, and ¥, define optimal admissible stresses by
the relations (9,10,30). The effective properties EZ and Gj, based on these
are strict lower bounds which also agree quite well with experimental data.
The status of the stresses associated with the optimal functions is less clear
which is a typical situation for any variational field approximation. It is,
however, believed that these stresses are of qualitative importance, at least,
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and the numerical results obtained, some of which are shown below, support
this belief.

The results obtained in this work can be easily used to estimate the
crack opening displacements (COD) when the cracks are equidistant. It is
rigorously true that the stress energy U of a cracked elastic body, homoge-
neous or non-homogeneous, and the stress energy Uo of the same uncracked
body, under same load, are related by

U=Uo+ % Em: /S 70 [u]dS (32)

where S, is the surface of the mth crack, TC is the traction on same surface
in the uncracked body and [u] is the COD. In the case of simple tension
discussed above U is given by (15) and Up = (6% /2EQ)V for the uncracked
laminate. Also, the only surviving T? is T8 = 01. The COD is now estimated
in the form of two equal and oppositely joined second order parabolas. Thus

z
fus] = 261~ (27
1
where 26 is the maximum COD. It then follows easily that

o/t = 200N ooq1 5z - 1/59) (33)

4. Results

Tilustrative results are presented for a [0°,90°], laminate in which the layers
of equal thickness are T300/SiC ceramic unidifectional composites with
fiber volume fraction 0.45. The relevant properties of the layer material
are:

E, = 4315GPa  Er=113.6GPa
Gy = 90.8GPa Gr = 39.3GPa
vy = 0.182 vy = 0.446

as = 2.391078(C° ar =5.491075(C°)

It is assumed that in between the layers there is a thin oxidation protec-
tion interphase of isotropic B4C material with thickness 0.02 of the layer
thickness and with properties

E; = 380 GPa G; =159.7 GPa v; = 0.19

Due to thermal treatment the interphase may develop many through
cracks. As has been explained above, this creates an orthotropic interphase
which may be considered perfect in normal z direction but imperfect in




12

shear. Increase of crack density of the interphase may be considered as
decrease of the effective shear stiffness of the interphase. All of the results
given below are in the form of plot families where each plot is associated
with a shear modulus value G;/m , m=15, 10, 20, 50, 100, 200. Figs. 3-5
show plots of Young’s modulus, TEC and shear modulus, all normalized
with respect to their values for the uncracked laminate, as functions of crack
density for the case of equidistant cracks, expressed by the parameter p. For
large values of p the properties of the uncracked laminate are attained while
for small values of p the properties reduce to those of alaminate in which the
900 layer has vanishing Er and G4 but retains it’s E4 value. Such stiffness
loss is associated with the concept of laminate netting analysis. The values
of the properties decrease with decreasing interphase shear modulus. Thus
for each property the uppermost plot is for undamaged interphase which
may be regarded as a perfect interface while the lowest plot is for m=200. It
is seen that the effect of interface imperfection, i.e. interphase damage, is not
very significant for Young’s modulus and TEC but is very significant for the
shear modulus. It is also seen that the plots for normalized Young’s modulus
and TEC are very similar and indeed these normalized quantities are almost
the same numerically. It should be realized that interphase damage has no
effect on an uncracked laminate under in-plane loading since there are no
interlaminar stresses in this case. -

Figs. 6-7 show internal stresses as functions of x ,for load N, when
the intercrack distance is 2a = 5t;. Fig.6 shows the in-plane stresses a;(,,;) in
the cracked layer and aﬁ? in the uncracked layer functions of z for the case
when the intercrack distance is 2a = 5t;, the family of plots being defined
by the sequence Gi/m. It is seen that the tensile stress in the cracked
90° layer decreases with increasing interphase damage amd therefore the
stress in the uncracked 0° layer increases with damage. Fig. 7 shows similar
plots for the interlaminar stresses 0z.(,t1) and 0,(z,11). These stresses
decrease with increasing interphase damage and the effect is significant.
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:Fu'gure 5. Effective shear modulus versus crack spacing
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5. Conclusion

Previously developed variational analysis of cracked laminates has been
extended to the case of imperfect interlaminar interface by use of a gen-
eralized thermo-elastic variational principle for imperfect interface. In the
present work detailed analysis has been confined to a cross-ply laminate
in which only the 90° layer is cracked. But there is no difficulty to carry
out similar analysis with imperfect interface for the case when all layers
are cracked, on the basis of the admissible stress system which has been
constructed in Hashin (1987) for orthogonally cracked laminates. It is also
a straightforward matter to analyze mechanical and thermal stresses.

Present analysis has shown that for a cracked laminate with interlaminar
interface which is imperfect in shear only, the quantitative effect of interface
imperfection on effective Young’s modulus and TEC is not drastic, but there
is significant effect on the effective shear modulus and internal interlaminar
stresses.
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DIFFERENTIAL SCHEME FOR EFFECTIVE THERMOELASTIC
PROPERTIES OF CRACKED COMPOSITE MATERIALS

V. Vinogradov and Z. Hashin




Differential Scheme for Effective Thermoelastic

Properties of Cracked Composite Materials

Introduction

Analytical determination of effective properties of composite materials containing ran-
domly oriented microcracks becomes a much more difficult problem than the problem of
small crack density discussed in the previous chapter. An undefined microgeometry and
interaction between constituents make the simple analytical approach, like in the above-
mentioned case, to be inapplicable. Thus, we must resort to an approximate scheme.
In this chapter the differential scheme (DS) approximation will be applied to predict
effective thermoelastic properties of composite materials containing microcracks.

The DS is based on the notion of incremental construction of the composite material




by gradual addition of infinitesimal amounts of inclusions. According to this idea, for a
two-phase composite of material 1 with moduli C®) and material 2 with moduli C®), we
start V{lth homogeneous matrix material 1. Then, inclusions of phase 2 are embedded
in the irnatrix in such a way that the inclusions are in dilute suspensions. This results
in effective moduli C* which may be obtained by the well-known solution for dilute
concentration of inclusions. The next stage consists of imbedding grains of phase 2,
that are in order of magnitude larger than the previous ones (so that the fundamental
assumption that they "see” an effective medium with moduli C* is quite accurate), and
so on. The DS hierarchy of composites continues until phase 2 occupies its correct volume
fraction.

We shall describe a procedure whereby a N-phase composite can be realized. The
first of the two procedures considered here is characterized by keeping the volume of the
composite ﬁxed at during the entire process, called the Fixed Volume Process (FVP), and
in the second, the volume of the composite is allowed to increase, the Variable Volume
Process (VVP). A schematic representation of the processes is shown in Fig.3.1. It will
be shown that both of the processes lead to the same canonical equations for the effective
moduli.

Let us begin with volume V; of material 0, an anisotropic, homogeneous, linear elastic
solid with elastic moduli tensor C®, which we refer to as the "backbone” material.
Grains of materials 1,2,..., N are imbedded in material 0 in such a way that the volume
remains fixed at V. This involves removing and replacing some of the original material
(FVP). Materials 1,2,..., N are also anisotropic, homogeneous, linear elastic with moduli

C® k=1,2,...,N. The composite now has a new modulus tensor C*, different from
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C©), The construction process continues by removing the current material and replacing
it with grains of the N materials until the phase volume fractions v, reach their desired
values v,’: .

Lei';j vo, V1, V2,...,vN be the current volume fractions of the materials 0,1,2,...,N

respectively, such that

vo+vl+v3+...+vN=1 (31)

At each replacement the removed material must have the same volume fractions of the
materials 0,1,2, ..., N as in the total volume. Thus, at each stage the material is assumed -
to be homogeneous. This can be realized if the replacement grains are an order of
magnitude greater in size than those at the previous replacement. In addition, the grains
must be dispersed at random and occupy an infinitesimal volume fraction.

Let the process be parameterized by an artificial parameter ¢, which is analogous to

time. The origin of the time is conveniently chosen so that
vu(t=0)=0, (k=1,2,...,N). (3.2)

For each ¢ the material is homogeneous, i.e. any unit volume of the composite contains
vk(t) of material k.

The volume AV/(t) of the material removed at any time ¢ is replaced with volumes

AVi(t) such that

AVi(t) + AVa(t) + ...+ AVn(t) = i AVi(t) = AV(2) (3.3)
k=1




After the replacement the volume of material k is

V [or(t) + Ave(t)] = V ve(t) — vi(2) ﬁ{:AV;(t) + AVi(t) (3.4)

=1

where V = V; is the volume of the composite, the first term in the right part of the
equality is the volume of phase k before the replacement, the second term defines the
removed volume and the third one represents the added volume of phase k. This relates
the increments in volume fractions vi(t) to the corresponding increments in Vi(t). When

AV(t) is small, these equations assume the form

V in(t) = Valt) — on(8) Vi) (35

=1

where f(t) = 5—t f(t). This relation between Vi(t), vi(t) and 94(t) can be inverted to give

Vi(t) as:

T(t) . o(t)
-'—‘7-“ = vk(t) + Uk(t) 1= v(t) (36)

where v({) = ,é w(t), 5(t) = 5_%1 on()-

For the VVP process the same relation may be obtained taking into account that V
is allowed to increase. Begin at t = 0 with an initial volume V. At each step of the
homogenization, incremental volumes AVi(t) of materials 1,2,..., N are added to the
current total volume V(t) = Vo + éfjl Vi(t). The volume fraction of material k is defined

as

Vi (1)

0=y

(3.7)

Now we are retaining all the added material within the mixture. The derivative of (3.7)




with respect to time ¢ has the same form as for the FVP:

_ WOV -V V@) _ %) _ wl) &
wlt) = o3 vk(t> v

Consequently the expressions for Vi(t)/V(t) are the same as (3.6)

Vi(t)
V()

o(t)
— (1)

Or(t) + ok(t) §

with the only difference that the constant V in (3.6) is replaced here with V/(t), which is
a function of t.
When the small amount of inclusions AV(t) is added to the homogeneous material

with stiffness C*(t) and compliance S*(¢) the incremental change in the moduli is given

by
AC*(t) = f:(c(")—c*(t)) A‘k)(t)AV"(t)
k=1
AS*(t) = i(sm—s*(t)) B(")(t)AVk(t)
k=1

where A®)(t) and B®)(¢) are forth rank concentration tensors evaluated for dilute con-
centration of the inclusions in the matrix with moduli C*(¢), and defined by the linearity

relations

eW=A®(t)z

& ®=BHW(t)7

Here £*) and & *) are average strain and average stress over phase k, the first when ¢ is




prescribed and the second when & is prescribed. In the limit as ¢ — 0 we have

2

Er(t) =Y (CP-C*(1)) A(")(t)——(t)
k=1 (3.8)

$t(t) =Y (sW- S‘(t)B(")(t)—(t)

k=

2

ot

where Yvﬁ(t) are defined by (3.6). Because the relation -“%(t) is common for both the
FVP and the VVP, differential equations (3.8) are said to be canonical equations of the
DS, independent of the specific material replacement process. Integration of (3.8) with
use of initial conditions C*(t = 0) = C© and S*(t = 0) = S(? gives the effective elastic
moduli of multi-phase composite material.

It must be noted, that functions v(t) describe a path in the (vi,vs,...,vn) space
as t varies, and ¢ may be considered as an arc length parameter. The path begins at
the origin, it is restricted by the plane v; + v + ... + vy = 1 and terminates at the
~ point (v{ s v{ yeons v{v), which is associated with volume the fractions of the phases in the
composite under consideration. An example of such a path for a three-phase composite
is shown in Fig.3.2. It is apparent that any arbitrary functions vi(t), which lead to the
same path in the (v,vs,...,vN) space, will give e(iua,l results for the effective moduli.
Additional relations between the variables vi(¢) and Vi (t) for the construction procedures
described above are given in NORRIS [20] and NORRIS et al. [21]. An explanation of the

distinction between paths will be given in section 3.3.




Figure 3.2: A homogenization path in the (v, ,v ,) plane.
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3.2 Effective Thermal Expansion Coefficients

3.2.1 Development of Effective Thermal Properties

Conside';‘ a heterogeneous body of volume V subjected to temperature change ¢ (Fig.3.3).
The body consists of an arbitrary anisotropic matrix 0 with moduli C© ;Lnd thermal
expansion coefficients a(®, and inclusions with moduli C®(k=1,2,...,N) and thermal
expansion coeflicients «®). At each point of the body the stresses and strains are related

by
e(x) = S(x)o (x) + a(x)p

o (x) = C(x)e(x) + T(x)p

(3.9)

where I'(x) = —C(x)a(x) and S(x) = C~!(x) is the compliance tensor. For given bound-

ary conditions (T(S) = 0; ) the average stresses and strains are defined by

™

=% / c(x)dV = % / e(x)dV—l—% j e(x)dV= a*ep
1 4 AV

. . ;’-A" (3.10)
z :Vla(x)dV = ia(x)dV + V-/Ava(x)dV =0
? T(s)=0

Figure 3.3: A composite body under temperature change ¢ (T(S) =0).




where a* are the effective thermal expansion coeflicients of the composite, AV defines

the volume of inclusions and V — AV defines the volume of the matrix. After substitution

of (3.9a), the last equality in (3.10a) may be rewritten in the form

a'oV = [e@@av+ [ c(av

AV V-AV

= [ 8697 () +a(x)eldV + [ 89569 +a%] av
AV VAV

and by using the fact that the average stress is equal to zero (3.10b) we obtain the

following result:
'V =aOV + [ [8(x) -8 o(x)V + / [0() —a®@]@av  (3.11)
AV AV

Because the compliance tensor S(x) is a piecewise constant function, the integration in

this equation may be replaced by the sum:

N 1 N
atp=a®@p + 3 [s®-sO] 7 / c(x)dV + Y [a®—a] ¢

AV
—_ 3.12
N CEE)

Now recalling the definition of average stress, this equation may be rewritten in the form

N N
a*p=ap + 3 [s®-80)] aé‘% + 3 [a®—a )] w%‘i (3.13)

k=1 k=1

or eliminating the temperature ¢ we obtain the exact result

AV,

% (3.14)

Ao = 3" [s0)-50] b(k)é‘;/ﬁ £ 3 [a®—a )]

k=1 k=1

10
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where Ao = a* — a©@ and b¥) is a second rank tensor defined as the average stress in

phase k due to an applied unit temperature change:
®) = bkl (3.15)

Now return to the DS described in the previous section and consider the DS con-
struction process at any instant of time ¢. An addition of inclusions of volume AV to

the homogeneous material with overall moduli C* and TEC a* will lead to the change

of overall TEC Aa*, which according to (3.14) assumes the form

Aaur—zngﬂswwt#m)A” =0

- k=1

a)+§:[<“—a(n] (3.16)

In the framework of the DS, at each step of the construction process only infinitesimal
amount of inclusions is embedded in the homogeneous material obtained at the previous

‘ step. Thus, equation (3.16) may be parameterized by the artificial time ¢

a Vi i Vi
a*(t) = [s®-s()] b®() 7O+ kz; [ ® —a*(1)] a0 (3.17)

k=1

and tensor b(¥)(t) may be obtained by solving the problem where dilute concentration
of inclusions of phase k is embedded into the matrix with effective properties C*(¢) and
a*(t).

The differential equations (3.17) may be simplified by resorting to the so-called decom-
position scheme, proposed by BENVENISTE & DVORAK [23]. According to their result,

the concentration tensor b(*) can be uniquely determined in terms of the fourth rank
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concentration tensor B(®) which relates the stresses in phase k to the external applied

homogeneous traction T;(S )= a?jnj , and is defined as

50 = B®),O

Their result can be rewritten for our case in the form
b® ()= (B®(1) - I) (S® - 5°() " (a®~a(t)) (3.18)

where I is the fourth-order unit tensor. Substitution of this relation into (3.17) leads us

to following differential equations for components of the effective TEC tensor
&t (t)= f; (s® —s*(t)) B®(2) (s® - s*(t))‘1 («®—a*(t)) E(t) (3.19)
k=1 ] |14

when %—(t) is defined by

a(t)

%) = n(t) + 00 =

Equations (3.19) and (3.8b) and the additional initial conditions a*(t = 0) =a® givea
set of coupled differential equations for estimation of the effective thermoelastic moduli
of multi-phase composites.

Now assume alternative boundary conditions, when homogeneous displacements u(S) =

£%x =0 are applied to the external surface of the body (see Fig.3.4). In this case the ex-

pressions for € and & becomes
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(3.20)

Analogous consideration of the problem results in the following set of coupled differential

equations for components of tensor I'"
., ) N - ’
@ ()=3 (c® - c (1)) A® () (¥ - C*(t)) ' (T -1+(2)) Yvi(t) (3.21)
) k=1

which together with (3.8a) and the initial conditions I'*(t = 0) = I'® may be used to

predict the overall thermal stress tensor I'™.

3.2.2 Proof of Consistency

It is required to prove that «* and I'* as predicted by (3.19) and (3.21) are mutually
reciprocal in the sense that

"= —C*a* (3.22)
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If the effective themoelastic moduli obey this relation at the endpoint of the DS homog-

enization process, it must also be satisfied at each instant ¢
()= ~C(a"(1) (3.23)
Let us take the derivative of I'*(t) with respect to time ¢
dpet)= — L (G (Bar(t) = —2C (W) () - C() 2a™(®)  (3:24)
dt dt dt dt

Substituting expressions (3.19) and (3.8a) for a*(t) and C*(t) respectively into (3.24) we

obtain

™) = _}If(c“)-c*(t)) A(k)(t)a*(t)%(t) (3.25)

k=1

N . .
— Z C*(t) (S(k)_s*(t)) B(k)(t) (S(k)_s*(t)) (a (*) —a*(t)) %(t)

k=1

which after simplification of the right side may be rewritten in the form

() = —fj(c“)—c*(t)) AB)(t) (3.26)

k=1

x [a*(t)—-S*(t) (s<’°)—s*(t))"l (a <‘°>—a*(t))] %(t)

where the relation between concentration factor tensors B(*)(t) and A®)(¢), given for

dilute concentration of inclusions as

B®¥)(t) = CWAW (1) S*(1), (3.27)

14




was used. Recalling the equality C*(t) S*(t) = I proved for the DS by HASHIN [14] and

the identity that results from it:
s*(t) (sW-s(1)) " = — (CW-C(1)) " c¥,
differential equations (3.26) reduce to

(=3 (€ - () A¥(Y) (¢ - (o)) ™ (-1 (o) %—(t) :

k=1

which faithfully copies (3.21) obtained by direct treatment of (3.20).

This proves that (3.23) is satisfied and completes the self-consistency of the DS.

3.2.3 Levin’s Formula

Consider a two-phase material which consists of the matrix with compliance S© and
thermal expansion coeficients a (%), and inclusions with compliance SM and TEC a M.

In this case equations (3.8b) and (3.19) reduce to

§'() = (VW -s"®)BYW) 5 jlii)(t)

a*(t) = (S(l) — S*(t)) B(l)(t) (S(l) _ S*(t)) -1 (a(l)—a*(t)) - ﬁlz()tl)(t)

Eliminating the common multipliers from these equations we obtain

a*(t) = §°(t) (8O —5°())” (a®W—a"(®)) (3.28)
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Now define

x(t) = aW—a*(t)

Y(t) = SW-8*(2)

Accordingly, the derivatives of these tensors with respect to ¢ are

x(t) = —a*(t)

Y(t) = -S(t)

and equations (3.28) assume the form

x(t) = Y(£) Y()"'x(2) (3.29)

The solution of these coupled differential equations may be written as

x(t) =Y@)Y(#)'x(t) = Y(¢)z(t)

where z(t) = Y(¢)7'x(t). Substitution of this into (3.29) leads to

Y(t)2(t) + Y(&) 2(t) = Y() Y()"VY (2) 2(t)

Noting that the expression in the right side and the first term in the left one are equal,

we obtain

Y () a(t) = 0

16




which results in the following simple form for z(t)
z;j(t) = cij=const.

Therefore

x(t) = Y(t) e (3.30)

and recalling the definitions of x(t) and Y (¢) we can rewrite (3.30) in the form
a*(t)=a® — (s —5*(1)) c (3.31)
where ¢;; may be found from the initial conditions at ¢ = 0:

a*(t = 0) = a(o)

S*(t = 0)=S©

It follows that

c=—(s® - sm)"l (a®—a®)

which together with (3.31) yields the relation between a*(t) and S*(¢) at any instant ¢
o*(t) = a® + (5(1) _ s*(t)) (s(z) _ S(l))"l (a M) _,, (2))
and consequently at the endpoint of the homogenization process

a”=a® 4 (5O —5%) (s@ - S(l))‘l («®—a®) (3.32)
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This result is the well-known Levin’s formula (see LEVIN {24]). It is interesting to
note, that the result of the DS approximation satisfies Levin’s formula, which is precise for
any two-phase statistically homogeneous composite material with completely arbitrary

pha.‘senigeometry and elastic symmetry.

3.3 Path dependence of the homogenization process

The coupled systems of differential equations (3.8a),(3.8b),(3.19) and (3.21) depend upon
the path we choose to consider in the (v1,vs,...,vn) space. In fact, tWOWaifferent paths
from the origin to the same endpoint (v] ,v5,...,v§) will, in general, not give the same
re31-11t at the endpoint. In this section an effort will be made to explain the distinction
between paths.

The key to the present consideration is the idea of realization, introduced by MILTON
[25]. An approximate scheme is called realizable if we can describe a construction process
to make a composite material with effective moduli predicted by the scheme. Thus, the
Hashin-Shtrikman bounds for the bulk modulus of a two phase randomly disordered solid
can be realized through the well known packed-spheres geometry (e.g. HASHIN [26]).

Let us list the features of the inner structure of composite materials, obtained by the

DS construction processes described above.

1) The essential characteristic is the diversity of inclusion sizes.
2) Inclusions of each size are in dilute concentration,

3) They are dispersed at random and sufficiently separated.
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The first feature suggested by ROSCOE [27] arises from the fact that at each construc-
tion step the composite has to look homogeneous to the inclusions being inserted, which
is possible only if the inclusions are increasing in size at each succeeding step of the con-
struction process. More specifically, the size of inserted inclusions must be comparable
to the representative volume element (RVE) size.

From this point of view, different paths in the (v, v,,...,vn) space may be associ-
ated with different microstructures of a composite, or in other words, with different size
distributions of inclusions.

Consider a composite, which satisfies the above-enumerated requirements for material
microstructure. A composite of this kind contains inclusions of different sizes z;, which

may be ordered as the increasing sequence
21y 22y Z3y- vy Zrye -y 2M (M — 00)

so that

DK B K. 5. L2y

Each group of inclusions characterized by a common size z, may contain a number of
phases. The volume fraction of phase k in group r is denoted Av](r). In this case the

following relations are satisfied

M
Y Avi(r) = of
r=1

N
kz_:l Av{(r) = Avf(r)
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where Avf(r) is the volume fraction occupied by group r.

According to this, we can build the construction process starting with inclusions
of size z;, afterwards embedding inclusions of size z; and so on, up to zp, where the
subscr:xipt index denotes now the step of the construction process.

First consider the VVP, according to which all the volume inserted to the composite
remains till the end of the construction process and creates the final microstructure.
Thus, using formula (3.7) we obtain the points vi(r) on the homogenization path

> Avf(i)

v(r) = —=5 (3.33)
vg + Y Avi(d)

=1

An example of a homogenization path built for a given 3-phase microstructure is
shown in Fig.3.5. Size distribution of the inclusions’ volume fractions of is shown in

Fig.3.5a for phase 1 and in Fig.3.5b for phase 2. The homogenization path obtained by

| (3.33) is represented in Fig.3.5c.

The same equation (3.33) may be obtained from consideration of the FVP, when the
volume of phase k added at step r, Avi(r), decreases repeatedly during the rest of the

construction process. For any phase k the following relationships are satisfied.

1. The volume added at the last step M is not changed:

Avi(M) = Avl (M)

2. The volume added at step (M — 1) decreases because of the removing of Av/ (M)
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Figure 3.5: Example of particle-size distribution and corresponding
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at step M:

Avi(M — 1) = Avi (M — 1) (1 — Av(M))

3. The same as (2) for any step r:

M
Avf(r) = Avg(r) T (1= Av(?)) (3.34)
t=r+1
On the other hand, the volume fraction Av, (m) of the inclusions characterized by size
2,, that are added at any step m (m < r) will decrease towards the step r, and will be

equal to

Avi(m) ] (L= o)

t=m+1
Combining these expressions for m = 1 to r we obtain the volume fraction of phase & at

step r of the construction process

() = 3 |Ave(m) T] (1= Av() (3.35)

m=1 1=m+1

Substituting (3.34) into (3.35) we obtain

r I (- Av) 3 Aol ()

u(r) = > |Avf (m) izzﬂ = M£=1 (3.36)
= 11 a-ase)|  T1 0-a0)

Using again the recursion formula (3.34), the product in the denominator of this equation
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can be obtained in terms of the group volume fractions at the endpoint

M M r
M Q-2av@)=1= 3 A/ (@) =0vi+3 AV (3)

t=r+1 i=r+1 =1

and eventually
PIAC)
i=1

v+ Avf (i)

=1

ve(r) =

which is precisely equivalent to formula (3.33) for the VVP.

This deduced relation proves that the homogenization path in the (vy,vs,...,vN)
space is uniquely determined by the (size of inclusions)—(volume fraction of phase)
dependences, which describe the microstructure of the composite under consideration.
The path is independent of choice between the construction processes discussed above,
by means of which the DS is interpreted.

It must be noted, that in order that the DS equations give a reasonable approximation
for effective moduli of a composite, its inner structure must comply with the above-listed
| requirements for the class of microgeometries obtained by the DS. If this is not the case,
or if the microstructure is not defined and only volume fractions of phases are known,
some assumptions of the path shape must be made to estimate the effective moduli of
the composite material. For example, in the case when all inclusions have the same size,
the straight line from the origin to the endpoint (v{ vl ,v{v) may be chosen as a
homogenization path.

In addition, we shall emphasize that details of the material microgeometry are im-
possible to obtain from a given path. If the unique microstructure—path correspondence

exists, the path-microstructure dependence does not. As an example, the straight line
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from the origin to the endpoint (v{ ,v{ yenn ,v{v) corresponds to an infinite number of

size—volume distributions, for which the phase volume fractions of inclusions of each size

are in the same proportion as the volume fractions of phases in the entire composite.

3.4 DS for Cracked Composite Materials

The purpose of this section is to apply the DS approximation to estimate the effective
thermoelastic properties of composite materials containing microcracks. It is possible
to assign cracks to a special class of inclusions, and thus all the assumptions about the
construction procedure can be extended to the present case. At each step of the process
inﬁnitesimajl amounts of inclusions and cracks, larger in size than at the previous stages,
are added to a homogeneous material. They are dispersed at random and well separated
in such a way that the material remains statistically homogeneous at each instant .
Special features of a crack as an inclusion are that its stiffness vanishes C° = 0, and it
occupies an infinitesimal volume fraction v, — 0.

Let us rewrite equations (3.8a) and (3.19) in the form

- _ s k k (1)
C*(t) = ;(C() C(t)A( )(t) (vk()—{—vk(t) (t)) (3.37)
a*(t) = 5 (s<'=> s*(t)) CWAB(1) $7(2) (s<’=>—s*(t))"1

| 1)
( Ba(w) (i) + w5 ) (3.39)

where relation (3.27) was used and phase N + 1 represents the cracks. Substituting

C¢ = CIN+1) = ( into these differential equations we obtain that the N + 1 term in
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(3.38) vanishes, and (3.37) reduces to

- b
&0 = 3 (eW-0() A% (30 + )2

k=1

—C*(t)A%(t) (vc(t) + ve(t) ”(t)(t)) ' (3.39)

N
with v = ka + v,. Now multiply both side of (3.39) by v, and perform the limit
k=1

ve(t) — 0 in such a way that the voids flatten out into cracks. Then

m [oC" @] = Jim [vc(t)Z(C"" ~0°) A9 (5100 + ()5 X))

ve(t)—0 ve(t)—0 —

. : o(t)
—C*(t)P(t) ‘]‘:1(1]:1)1_1+ (vc(t) + vc(t) (t)) (3.40)

N N
where v =) vz + v, — Y v, and the forth rank tensor P(t) is defined as
k=1 k=1

P(t) = lim (AD@)w()

and depends on moduli C*(¢) of the material around the cracks added at time ¢ and the
cracks’ geometry.
As an example we specialize (3.40) to the important case when the cracked particulate

composite material and its constituents are statistically isotropic, Fig.3.6.In this event

all tensors appearing in (3.40) must be isotropic and we represent them in the convenient
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Figure 3.6:

form, HILL [28]

C =3K I'+2G "= (3K,2G),
A= (A-la A2) ’

P =(P,P),

zgkl = 5,_,6]:1, I,!_lik[ = % (6ik6jl + 6:’15,1'1: -

IIII= I/, IIIIII — III,

51}\1—6]"[, 6I”kl—-0

Schematic diagram for randomly distributed cracks and inclusions

II III —

(3.41)
%5.','51:1) )

I'T =0,

where K and G are the bulk and shear moduli respectively, and A,, A2, Py, P, are con-

stants. Thus (3.40) assumes the form

N .
lim {vc [K* -3 (kW - k) 4P (i;k + vi 2 v)

k=1
lim { [G* -

5 (60 - 67) AP (it

k=1

where the dependence on ¢t is omitted for convenience.

26

. 1 . v
e )

=)
1—v

(3.42)

—G" P, lim

ve—0

(bc + v,
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We restrict our consideration to the case of randomly distributed penny-shaped cracks
when they are obtained by flattening ellipsoidal voids which have two equal semiaxes of
length a and the third one pa, where p = const can be made indefinitely small. Then

the volume fraction v, is

3
v, = Q%_a_ = Tpa (3.43)

where o without indices is the crack density parameter (CDP) introduced in Chapter 2.

Substituting this expression for v, into (3.42) we obtain

C* - *) — g*) AW (¢ v K"‘Pl . v
K =Z(K - )Al vk+vk1_v — K*— a+a1_v

k=1

N
. ) 4 (s
G-—;(G(") G*) AS (vk-{-vkl_v

Now we refer to the results of Chapter 1 for the effective bulk and shear moduli for small
density of open microcracks!(see Table 2.1). Assuming that « is small, we can rewrite

the result as

K-k = - 9 (1-2v)
. 32— (1-v)
G-G =2 — 4—5' (2_1/) (04

which for any step of the DS procedure implies the form

L16(1—v)

dK* = —K
9 (1—20m) "

1The load-induced anisotropy discussed in the previous Chapter can not be considered in the frame-
work of the DS. The reason for this is that if the applied loads change the material symmetry after
the first step of cracks addition, the successive randomly oriented cracks are embedded into anisotropic
material. In order to evaluate tensor P we have to know the crack opening displacement [u] (see Chapter
2) for a crack tilted to the material axes of symmetry, which is an extremly complicated problem.
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B2E-1)1-v),

5 (2-v)

dG* — _G*

Recalling the definition of tensor P it may be concluded that

16(1—v) |
h=guazame=""
320 —-v)(1-vY)
_32 - 3.45
b= @-m 77 (3.45)
e K —20"
WY =S BK 1 G
Therefore
. N . o b
k=3 (KO - k7) AP (i1 + v ) - Ko (a+ o™ )
=1 Y v (3.46)

. N
G*:Z(G(k)—G*)Agk) (ﬁk-{—vklzt])—-G’*n‘ (c’v-l—al_v

=1

where «* and n* are defined by (3.45).

The differential equations (3.38) will reduce to

N K& v
<% k) k) _ * .
ot = g:l ' Aj (a o ) (Uk + Uk v) (3.47)

where the influence of the cracks enters implicitly through K*.

Again, the question about the correspondence between composite microstructure and

an influence path is raised here. The relation (3.33) remains unchanged for inclusions,

and for cracks it assumes the form

> Aaf(i)

=1

o + > AvI(3)

=1

afr) =
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where Acf(z) is the CDP of the cracks of size i in the finite material.

As an example consider three different paths to the same endpoint (v{ ,of ) for the DS
construction process by which a three-phase material can be obtained (Fig.3.7). The first
one is v'the straight line from the origin to the endpoint A (vlf ,of ) . For each size i, the
volume fraction of the particles and the density of the cracks are in.the same proportion
as in the composite.

According to the next path OCA, the smallest cracks are in order of magnitude larger
than largest particles. Thus, the construction procedure is built in such a way that first
the inclusions and then the cracks are added to the material. The first stage corresponds
to the line OC along the axis vy, and the line C'A represents the insertion of the cracks.
Note, that CA is a horizontal line because the embedding of the cracks does not change
the volume of the composite, and hence the volume fraction of the inclusions.

The third path OBA is opposite to the previous one. We start with small cracks

and increase the crack density to the value 7 ifv 7 (point B) in such a way that it will
later decrease to the desired value of (point A) during removing of the cracks and their
replacement by the larger particles (for the FVP), or during the material volume V
increase with the insertion of the inclusions (for the VVP).

Elastic moduli K* and G* and thermal expansion coeflicient o* of the cracked com-
posite material, containing epoxy matrix and 40% of glass spheres as inclusions, are cal-

culated for the described paths by (3.46)—(3.47) and shown in Fig.3.8-3.10. The phase

properties are
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E v ' o
matrix 3.45 GPa 0.35 42. 10-6°C?
particles 72.40 GPa 0.2 5. 1078°C1

In ;11 ‘the cases of Fig.3.8-3.10 we show the effect of crack density on the effective prop-
erties. Both K* and G* vanish asymptotically with increasing crack density. Note, that
the event when the size of the cracks is larger than the particle size corresponds to the
upper curves, and the opposite case to the lower ones. If the difference in the results for
K* due to the influence path choice is insignificant, the shear modulus G* depends more
heavily on the path.

The dramatic effect of the path on the effective thermal expansion coefficient o* can be
seen from Fig.3.10. If small cracks and cracks that are comparable to particles drastically
decrease the value of o*, the cracks which are significantly larger than the particles have
no influence on the effective thermal expansion (the upper curve in Fig3.10). This can
be explained by that these cracks "see” an effective isotropic material which consists of
the matrix and the inclusions added previously, and it is well-known that homogeneous
heating of a homogeneous body containing cracks does not produce thermal stresses and

does not change the thermal expansion of the body.
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Figure 3.7: Three homogenisation paths in the (v, CDP) plane to the same endpoint A.
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Figure 3.8: Variation of bulk modulus (GPa) with crack density.
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Figure 3.9: Variation of shear modulus (GPa) with crack density.
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Figure 3.10: Variation of thermal expansion coeffient (10%°C-!) with crack density.
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MACRO-RESIDUAL STRAINS DUE TO CYCLIC LOADING OF
COMPOSITES

Z. Hashin and B.W. Rosen




Macro-Residual Strains Due to Cyclic Loading of

Composites

INTRODUCTION

It is well known that when a metal specimen is loaded into the plastic regime and then unlo-
aded, permanent strain which is known as residual strain will remain. This phenomenon is expla-
ined by internal microscopic changes which take place within the slip systems of the crystals of
which the metal is composed.

Similar phenomena are observed for ceramic matrix composites as is illustrated in fig.1 taken
from ref [1]. Such composites consist of elastic-brittle constituents which by themselves do not
exhibit any residual strains under load cycles. Yet when such composites are subjected to load
cycles residual strains on the macroscale are observed. Characteristically, the residual strains grow
with the number of cycles until they attain a limit value beyond which they do not increase, fig2,




.
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In the present-work the nature of this phenomenon is explained in terms of the residual thermal
stresses produced by cooldown from the high formation temperature of over 1000 CO to room
temperature and the damage in form of microcracking which develops during load cycling. It is
shown analytically that the macro-residual strain can be expressed in terms of effective thermal
expansion coefficients (TEC) of the composite as functions of the damage produced at the vari-
ous stages of loading history. These TEC are defined in the secant sense for the temperature
range under consideration. The theory is illustrated by evaluation of limit residual strains for uni-
directional fiber composites and cross-ply laminates.

THEORETICAL DEVELOPMENT

When a homogeneous stress-free body is in a state of uniform temperature ¢y and the tempera-
ture is changed to another uniform state ¢, the body remains in a stress-free state. If, however, an
initially stress-free composite body is subjected to such a temperature change, internal stresses
develop due to the mismatch of elastic and thermal expansion properties of the phases. Such
stresses are known as thermal or residual stresses. In the case of the elastic-brittle composites
considered here sufficiently large thermal stresses will develop damage in the form of cracks,
within the phase regions and/ or on the interface. Such damage produced by a temperature change
alone will be symbolically denoted as D¢ , the strain and stress fields at this temperature will be
written e$(x,D¢%) and o¢(x,D¢),respectively, and it is assumed that at temperature ¢ there are
no strains and stresses.

A thermoelastic stress-strain relation for temperature dependent properties within the tempera-

ture range [¢g,¢] may be expressed in the alternate forms

o =C(¢) € + T(¢) (¢-¢0) (2
e =S(¢) o+ of9) (¢-¢0) (b) (1)
r=-Ca ©

where C,S and aare temperature dependent stiffness, compliance and TEC tensors. It is implied
that «is a secant TET which is defined as the free thermal strain produced by the temperature
change ¢-¢y ,divided by the temperature change.
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An effective secant TEC of(¢) of a composite material is defined in analogy with
secant o¢) in terms of the average strain produced by uniform temperature change of a compo-
site which is not loaded. Spatially uniform temperature is a basic situation for composite materials
for it is the steady state temperature of a composite which is placed in a uniform temperature
environment. Since, by definition, there is no surface load the average stress vanishes and the
average strain for temperature change ¢o—> ¢, which may be called the macro-free thermal strain,

is written

g6 = o’ (6,D%) (¢-dp) 2)

where the TEC is also a function of the eventual damage produced by thermal stress. It is seen
from (2) that the computation of effective TEC requires the evaluation of a strain field within a
cracked composite material from which the average strain can then be determined. The form of
(2) is based on the tacit assumption that it is only the final crack geometry which is of impor-
tance and not the history of crack formation. While this is obvious for temperature independent
properties it may not be evident for the case of temperature dependence when it might be thought
that the temperatures at which the various cracks appear are also of importance. It is shown in the
appendix that indeed the temperature history of crack development is of no importance. One
might visualize the situation as permission to translate cracks which were formed at various tem-
peratures to formation at one same temperature. Thus we may formulate what may be called a
temperature translation principle for crack formation : the strain/ stress fields within a cracked
composite material with temperature dependent properties, produced by the temperature change
é-dp ,is afunction of the final crack configuration at temperature ¢ and not of the temperature
history of crack formation.

Suppose now that the composite is subjected to load defined by the homogeneous trac-
tion boundary condition :

T(S) = n(S) (3)

where S is the bounding surface, o® is a constant stress tensor, which is also the average stress in
the composite, and n is the normal to S. The loading (3) produces additional damage DT and
additional strain and stress €T (x,D¢+DT) and of (x,D¢+DT), respectively. Then average strain
is added to (2) in consequence of the loading which is composed of two parts, one reversible and
the other irreversible. The reversible part is of the form

T = S*(¢,D¢+DT) 0 (4)

where S* is the effective compliance tensor of the damaged composite. When the composite is
unloaded until &® = 0 ,assuming that no additional damage is produced during the unloading,
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the strain (4) will reduce to zero. The irreversible part of the strain added by the load is due to
the fact that additional damage DT has been produced by the load. Thus after unloading the com-
posite material is in a new state of stress and strain associated with the damage state D¢+DT. It
follows from the temperature translation principle formulated above that this new state of strain
is the same as in.a specimen in which this damage state would have been produced after a temper-
ature change ¢ — ¢ without the loading/ unloading cycle. Therefore in analogy with (2) the aver-
age strain after unloading can be expressed in the form

€ =o' (¢,D¢+DT) (¢-¢9) (%)

Specimens which are tested at room temperature have been previously cooled down in manufac-
ture and therefore the strain state (2) is considered as a zero strain state. Consequently, the load-
unload cycle produces a macro-residual strain which is the difference between (5) and (2). Thus

ér = [o"(¢,D¢+DT) - o’ (¢,D9)1(¢-0) (6)

Thus the average residual strain is determined by the effective TEC at the damage states before
and after the load cycle.

Similarly, if N load cycles of any amplitudes are applied and the cumulative damage
due to these cycles is denoted DN then on the basis of the arguments leading to the derivation of
(6) the average residual strain will be

&r =[a’(¢,D#+DN) - o*(¢,D#)1(¢- ) | (7

It should be noted that from temperature translation the actual details of the loading
history which produces a certain damage state are of no importance. If the same damage is pro-
duced by different loading histories - the residual strain will be the same, whether the loading is
only one cycle or many cycles of different amplitudes.

It often happens that a brittle composite material becomes crack saturated. This implies
that for increasing number of load cycles it becomes more and more difficult to produce addi-
tional cracks and the effective TEC approaches a limit asymptotically. An example of this for
cracked laminates has been given in Hashin (1988) where it has been shown that the effective
TEC of cross-ply laminates approaches asymptotic limits with increasing crack densities in the
layers. It follows from (7) that in this situation the residual average strain approaches a limit e,
This phenomenon is well known and examples based on actual experiments are shown in figs.1,2
1,21

Note that in accordance with the discussion above the value of ! also depends solely
on the end state of crack saturation and not on the history of formation.




APPLICATIONS

It follows from the theory developed above that analytical evaluation of macro-resi-
dual strains requires : (a) Knowledge of the damage produced. (b) Analytical evaluation of the
effective TEC as a function of the damage. Damage can be described on the basis of suitable
observation of a specimen. It would of course be very desirable to be able to predict damage ana-
lytically. Work of this nature has been described in Nairn and Hu (1994) and Hashin (1996).
Since ,however, this subject is still in its infancy it will not be considered here. The examples to
be given here will be concerned with the relatively simple case when the the temperature change
does not produce damage and the subsequent load cycling is continued until the specimen is crack
saturated. Thus the purpose is to evaluate the limiting final value of macro-residual strain.

As a simple first example consider a one-dimensional model of a unidirectional fiber
composite, fig. 3, where o, >of. Here m,f denote matrix and fiber, respectively and the TEC are
in fiber direction. Assume that cooldown from ¢y to ¢ produces no damage. Then the effective

TEC oy in fiber direction is given with good approximatiom by

* * o Eo v, + oEfv
G ($,D9) =} (4,0) =TI 8)

where v,, and v; are the volume fractions and the Young's moduli are un fiber direction. More
accurate expressions are available in the literature ; e.g. Rosen and Hashin (1970), Hashin

(1979).

The composite is now loaded by tensile average stress & in fiber direction. This pro-
duces tensile stress in the matrix which is superposed on the tensile matrix stress produced by
cooldown (since by hypothesis o, >of). Assume that the specimen is loaded to the point of
matrix crack saturation. This matrix crack accumulation is the damage DT. The matrix then
becomes ineffective and therefore the effective TEC reduces to of. Thus

ap(¢,D¢+DT) = ay(¢,DT) = o )

It follows from (7-9) that




- E,Vv
ert = (ST (44 (10)

Since ¢ <¢y and & <o, this is a positive residual strain.

The second example is concerned with a symmetric cross-ply laminate, fig.4, where
the layers are made of unidirectional fiber composites. The
laminate is cooled down from stress-free temperature ¢, to temperature ¢. If no damage is pro-
duced by the cooldown, evaluation of the laminate TEC and internal stresses is elementary. For
the case of equal layer thicknesses the TEC has the simple form

1+VA

*0 — -
o = *(oar-o0) T35, FEA By (1)

where oy and of are axial (fiber direction) and transverse TEC of the unidirectional layer mater-
ial, E5 and Eg are the Young's moduli for these directions and » 4 is the axial Poisson's ratio.

Denoting the in-plane axial (in fiber direction) and transverse layer stresses g, and
or, respectively, we have

_ _Ep (op-a4)
GA o 1+2”A+EA/ET (d)-%)

(12)
or =-0p

All TEC in (11,12) are to be interpreted in the secant sense with respect to tempera-
ture change from stress-free temperature ¢ to final temperature ¢.

In unidirectional fiber composites with polymeric or metallic matrix generally of >ap
. It follows from (12) that when laminates made of such materials are cooled down from ¢y,
tranverse tensile stresses oy will develop. Such stresses may crack all layers along fiber directions
producing so-called intralaminar cracks. In order to keep the anlysis simple it will here be
assumed that cooldown does not produce cracks. Next the laminate is subjected to tensile cyclic
uniaxial stress ¢® in a direction transverse to the fibers in the inner layer, say, which is designated
as the x direction. This load produces transverse tensile stresses in the inner layer which super-
pose on the tensile thermal stresses due to cooldown. It is assumed that cracks are produced by
this cycling, fig. 4, and as is known from experiment, after a sufficient number of cycles crack
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density in the inner layer becomes so large that no more cracks can be added by the load cycling

which implies that a stage of crack saturation has been reached. The effective TEC in load direc-
tion for this limiting case has been given in Hashin (1988) in the form

o = a0 + BT (1 + By/ Co) K} (13)

where
BO = -(1+1/)\) IJA/EA
Co = 1/Ep + 1/XEp

(14)
A = tZ/tl

kl =d/

Here inner and outer layers have been labeled 1 and 2, respectively, t; and t, are layer
thicknesses and ol is the stress in the inner layer for an undamaged laminate. Expression (13)

can be very much simplified to read

. va (o - o)
(15)
Ui =EA/ET

Since o0 is an unwieldy expression for arbitrary A, we shall restrict ourselves to the simple case
of A=1. Then, identifying (11) with o*(¢,D%) and (14) with A=1 as o’ (¢,D$+DT) ,where in
this case there is no thermal damage, we have from (6) after some algebra

s, (or-op) (149-203)
€ = " (Tn) (+n+2rs) & %0)

(16)

and it is seen that (16) is a positive strain increment ,since oy >op and ¢ <d¢y.
There is of course no difficulty to carry out all of the preceding calculations for the
case of unequal thicknesses. This is best done numerically as the analytical results become

unwieldy.
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The situation oy <oy may arise in ceramic composites ; for example : the TEC of a
material composed of Nicalon fibers and SiC matrix. In that case the stresses (12) reverse sign
and o is a compressive residual stress which can not produce cracking. If the laminate is now
subjected to tensile cycling the compressive residual transverse stress subtracts from the tensile
stress produced by external load. The applied tensile stress may be large enough to produce
cracking but after unloading the inner layer will again be in compression and the cracks will be
closed. Therefore there is no additional crack effect with respect to the state before loading and
there will thus be no residual macro-strain.

Results of sample calculations of limit residual strain and layer properties for a cer-
amic matrix composite are shown in the table below. The material consists of T300 graphite
fibers embedded in SiC matrix. The volume fraction of fibers is 0.4 ,the reference temperature is
& = 1025 CO and the laminate is cooled down to a temperature of ¢ =25 CO.

Table
Material  Ej Et va o or oA or E;f(
T300/SiC 4345 166.1 0.179 4.45 7.34 -25.54 2554 7.14
GPa GPa 10-6/Co 10-6/C°c MPa MPa 10-4

CONCLUSION

It has been shown in general fashion that macro-residual strains produced in elas-
tic-brittle composites under cyclic loading are tied to the internal thermal residual stresses and the
damage produced by the cyclic load and that, furthermore, these residual strains can be analyti-
cally expressed in terms of effective TEC as functions of damage. The problem of evaluation of
residual strains has thus been reduced to the well known problem of evaluation of effective TEC.

Some simple illustrative evaluation examples have been given and there is no diffi-
culty to carry out more complicated calculations for cross-ply laminates in which all plies are
cracked. The theory can also be readily applied numerically on the basis of numerical calculation
of effective TEC for cases of interest.
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APPENDIX

The governing differential equations of any homogeneous constituent phase of the
temperature dependent thermoelastic composite body are obtained by introduction of (1a) into the
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stress equilibrium equations. Thus

C(Dijrk,; =90 (A1)

where u(x) is the displacement and there is no contribution from the thermal term in (1a) since it
is constant and thus its derivatives vanish.
From (1a) the traction vector associated with surface normal n may be written

T; = Cijaug,1n; + T'(8) (¢-¢o)n; (A2)

The traction (A2) and the displacement u must be continuous at the phase interfaces.

Let it be assumed that the composite is subjected to any temperature variation
within the range [¢g,4] and a surface traction distribution T(S,¢). It follows from the mathemati-
cal nature of the composite boundary value problem (BVP) described above that : (a) The solu-
tion of the BVP for any temperature is a function of ¢ and not of temperature history. (b) Since
the BVP is linear in space its solution u,o at any temperature ¢ can be constructed as the superpo-
sition

u =ué + ul
(A3)

o=0%+ ol

where the ¢ superscript indicates the solution of the BVP for the temperature input with T(S) =
0 and the T superscript indicates solution for specified ¢ with load input T(S,¢).

We now describe two different scenarios for the same composite body with
bounding surface S. First, the temperature is changed from ¢y to ¢, , and a crack with surface S;
appears at temperature ¢,. Second, the temperature is changed from ¢ to ¢;; the same identical
crack at same location appears at temperature ¢; and then the temperature is changed to ¢,. We
wish to show that in the two cases the internal fields at temperature ¢, are identical.

Consider first the case when the composite body undergoes a temperature change
¢ = ¢, , there isno load on S, i.e. T(S) = 0, and no crack appears. The stress field at any tem-
perature ¢ for this case is identified with ¢®(¢) in (A3). The traction on the anticipated crack
surface S, which at this stage is a mathematical surface is denoted T(S,,$). Next we consider the
same body with no load on S and no temperature change which is subjected to the traction
-T(S,,$) on S.. The stress field produced by this load is identified with of (¢) in (A3). The
stress field of the first scenario is




.
1 (d) = 0¥(¢) + o () (A4)
The stress field of the second scenario is
#2(4s) = H(dy) + A (By) + A (d)- 7 () (AS)

where the last two terms in (AS) are due to the temperature change ¢; -> ¢, . In each case the
tractions associated with the stress field vanish on the crack surface S; and on the bounding sur-
face S. It is seen that the two scenarios result in the same stress field and similarly in the same
displacement and strain field.

Now the same reasoning can be applied again to two scenarios of an additional
crack appearing at different temperatures to conclude finally by induction that temperature trans-
lation of cracks is valid for any number of cracks.
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Finite Thermoelastic Fracture Criterion with

Application to Laminate Cracking Analysis

Introduction

The dominant mode of damage development in composite materials with polymeric or
ceramic matrix is the accumulation of cracks. In particulate composites and in unidirectional
fiber composites such cracks occur as matrix cracks, interface disbonds and fiber breaks. In
fiber composite laminates so-called intralaminar cracks accumulate within the layers, along
the fibers. It is of primary importance to develop an analytical capability for prediction of
such crack accumulations and it is with this goal that the present work is concerned.

The subject is within the realm of fracture mechanics but the approach is of necessity
different from the one adopted in classical fracture mechanics. The latter is primarily con-
cerned with differential extension of a single crack, or perhaps of several cracks with well
defined locations. In composites the concern is with spontaneous appearance of many cracks
of finite surface and ill defined locations. It may therefore be appropriate to refer to the sub-
ject as finite fracture mechanics. Spontaneous crack formation implies that new cracks
appear in very short time and it is not possible or of interest to follow the history of their
development. The formation of new cracks can thus be regarded as fracture events. No
single crack produces failure and every crack is arrested by a boundary. The uncertainty of
location of cracks introduces as important geometrical parameter the crack density and
perhaps, as will be seen later, other global quantities such as standard deviation of crack
spacings.

Furthermore, composites are manufactured at relatively high temperature and are sub-
sequently cooled down to room temperature. This process introduces residual stresses,
possibly of considerable magnitude, which cannot be ignored and must be incorporated into
the formulation and analysis.

There are two major tasks in the analysis of the phenomena described above: (a) Es-
tablishment of a criterion for new crack formation. (b) Stress analysis of the cracked body
for purpose of application of the fracture criterion. A current major research activity within
the present subject involving these two tasks, is analysis of intralaminar cracking of fiber
composite laminates which has grown into a voluminous literature. A recent review has been
given by Nairn and Shu (1994).

Literally all of the work on cracked laminates has been concerned with so-called cross
ply laminates which consist of layers with reinforcement directions of 0° or 90°. The most
commonly used method of analysis has been shear lag , which appears to have been initi-
ated for cracked laminates by Garrett and Bailey (1977). However, shear lag is a roughly
approximate one dimensional method of analysis which brings in an artificial shear transfer
zone in-between the laminate layers. The thickness of this zone is an unknown parameter
which can only be obtained from some experimental information. Furthermore, the shear
stresses as calculated by shear lag do not vanish on crack surfaces, as they should.

A two dimensional variational method of stress analysis has been established by Hashin
(1985) based on the sole approximation that in-plane layer stresses are constant over layer
thickness. This has been applied for laminates with one kind of layers cracked and has been
generalized in Hashin (1987) to the case when all layers are cracked, which required a 3-
D variational analysis. McCartney (1992) has constructed approximate elasticity solutions




BB

which yield results similar to the ones obtained in Hashin (1985,1987). Varna and Berglund
(1994) have generalized the variational method by permission of certain variations of in-
plane stresses over layer thickness, at the price of considerable complexity; Nairn (1989) has
generalized the Hashin (1985) analysis to thermoelasticity.

Regarding fracture analysis, there is here adopted the traditional point of view that a
fracture criterion should be based on energy release. According to Nairn and Shu (1994) this
approach was first applied to laminate cracking by Parvizi et al (1978) and has been subse-
quently used in many investigations which universally employed the shear lag approximation.
Nairn (1989) was the first to use the much more accurate variational method in conjunction
with energy release criteria to predict crack densities in cracked laminates, obtaining good
agreement with experimental data; Nairn(1989), Liu and Nairn (1992).

In the present work it is first shown that the energy release required for formation of
new finite crack surface, by load and/or temperature input, in a body which contains an
initial field of residual stress can be expressed entirely by stress (or strain), thus providing
a simple and convenient fracture criterion. Furthermore, on the basis of this result, it is
shown that an upper bound on the energy release is obtained with admissible instead of
actual stresses. Then a new simple method for thermoelastic analysis of cracked laminates
is established which yields thermoelastic results by a simple replacement in corresponding
isothermal results. On the basis of the above results crack formation criteria for cross-ply
laminates are established in terms of statistical parameters of crack distribution. It is shown
that these criteria assume simple forms for small and large crack densities.

Thermoelastic Craéking Criterion

This section will be concerned with the development of a criterion for the spontaneous
formation of new cracks due to surface load on a thermoelastic-brittle body in which there
are residual stresses due to previous temperature history. Unlike classical fracture mechanics
where infinitesimal increase of crack surface is considered the concern is here with finite
increase.

Consider an elastic-brittle composite material body which is first subjected to temper-
ature change T without load and is subsequently loaded by surface tractions T(S) on the
bounding surface S. For composites the most common and important case is spatially con-
stant temperature. Because of thermal expansion mismatch the temperature change will
produce residual thermal stress 6™ while the subsequent mechanical load will add mechan-
ical stress 0™, resulting in an initial stress field 6® = ¢™ + ¢™°. Here and from now on
boldface symbols denote tensors and vectors. Initial formation of internal cracks may have
occurred due to temperature change and/or load and their surface is denoted Si. Now
consider the possibility of spontaneous formation of additional cracks for same surface
load T(S). Then the thermal and mechanical stress fields change to 0™ and o™ , the final
total stress field is & = 0" + 0™ and the final crack surface is denoted S.. Denoting by T
the tractions associated with ¢ and all differences between final and initial quantities by the
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symbol A, (e.g. Ao =0 — 0% AS, = S, — S«), there are the following relations
TYSw) =0; T(S)=0; AT(S)=0 (1)

The stress-strain relations are

€ =8So"+al ; €"=So™

(2)
A" =SAo" ; Ae™=SAo™

where S is the elastic compliance tensor and « is the thermal expansion tensor. Frequent
use will be made of the theorem of virtual work for a cracked body. This is written in the
form

fv oedV = [5 TudS + [ TudS (3)

Se
where S, is the cracks’ surface considered twice as if the cracks were very flat voids, o and
¢ are related or unrelated equilibrated stress and compatible strain, respectively, and u is
displacement. The contribution from the crack surface integral vanishes in the following
instances:

T(S.) =0
(4)

T and u are both continuous across S

Development of Fracture Criterion

When new crack surface AS, of area AA, forms without change of surface load the
internal stress and strain fields change. There is a resulting change in internal mechanical
energy which will here for reasons of subsequent development be expressed in terms of stress
energy and will be denoted AU¥. Since, by hypothesis, the surface load does not change
during the process of new crack formation the external energy change is

AU® = [S TAudS (5)
The internal mechanical energy change will be defined in terms of stress energy with density
W, defined as
1
W(o )= 3 oSo (6)
Then the internal energy change is
AU = [V AWAV = /V [W(o) - Ww(o®)] v (7)

If in addition energy of amount AT* is required to open up the new crack surface, then the
criterion for new crack formation is given by the energy balance '

AU® = AU + AT _ (8)

4
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where, I' is the critical energy release. It may be assumed that there exists a material
surface energy per unit area of crack opening -y, in which case

AT = yAA° 9)

It follows that < is also the analogue of the critical energy release rate which is usually
defined as the derivative of the energy release with respect to crack area.
From (1, 3, 4, 5)
AU® = /v oclAedV (10)

and using (1) this can be expressed as
AU® = /v (0°SAo + AoSAa)dV (11)
The internal energy (7) can be expanded to read
AU = [ (o°80 + %AaSAa)dV (12)
Tt then follows from (8, 11, 12) that
AT* = -;- /V AoSAadV | (13)

Thus, the critical energy release has been expressed entirely in terms of stress.
In view of (7, 12), eqn. (13) can be written

AT = [ (AW —o°
/V (AW - 6°SA) aV (14)
The second integral in (13) can be transformed as follows
o = 00V = 0 _
[ o°saoav = [ Acso®av = [ Ao (<~ oT)av
Now from (1 - 4)
/ Ace®dV = / ATudS' = / (T - TY)udS' = — / TOu%S' =0
v Se Se

C

Therefore

/V o°SAgdV = — / Ao aTdV (15)
v
and an alternative form of AI is

AT® = /V [W(o) - W(®) + (o - 0®)aT]av (16)

There is an important consequence of the representation (16). If the surface load T(S) is

achieved in a monotonic sequence of loads T}, T?,.-- ,T",--- , T, at the same temperature,

and if (9) is valid with fixed -, then for any load increase, T to T", say

AT = 7AA, = /V [W(e™) — W(e"™) + (e" — o™ Y)aT| dV (17)

5
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Summation of (17) over all sequential loading steps recovers the result(16) but with an
important difference of interpretation. Previously the stress fields 0 and o where associated
with same surface tractions while in the present case 0 is associated with surface load
T(S) ,say, which for example may initiate cracking, while o is associated with T(S) and
a subsequent crack geometry produced during the sequential cracking process..

There is of course no difficulty to express (13, 16) in terms of strain by use of the relations
(2)- '
In summary, if surface load T(S) admits increase of crack surface AS,, then the stress

increments due to increase of crack surface must satisfy (13, 16) where AT is the critical
energy release required to produce the new crack surface. The criterion includes as special
cases the situation when there are no residual stresses and on the other hand, the situation
when cracking is due entirely to residual thermal stresses and there is no mechanical load. In
the latter case (13, 16) becomes a criterion for crack formation due to temperature change
alone. When energy required to open cracks is proportional to crack surface area, as ex-
pressed by (9), the criterion (13,16) is also valid for the case when the total new crack area
opens up sequentially during the loading process.

It should be further noted that: (a) Kinetic energy associated with the dynamics of spon-
taneous crack growth has been neglected. (b) The results obtained are valid for temperature
dependent properties. Thus, if T is the temperature change relative to initial temperature
To, then the compliance S should be taken at temperature T'+Tp while the thermal expansion
tensor « should be defined in the secant sense over the interval (ToTp + T). (c) Everything
done here is valid for residual stresses which are not necessarily the result of temperature

4 change, but it is necessary that their increments due to additional crack formation obey the
relation Ae"= SAo".

Bounding of Energy Release

The complementary energy of an elastic body with internal stress field 0%(x), temperature
change T'(x) and tractions T prescribed on its entire external and internal surfaces is defined
as

1 1 T
Uc(a®) = /V (50°80° +@0°T — Sepm)dV (18)

where Tp is a reference temperature and c, is the specific heat at constant stress. Let
it be assumed that due to internal changes, e.g. additional crack formation, the internal
stress field changes to o(x) while the temperature field remains unchanged. Then the new
complementary energy is Uc (o). Now consider instead of the actual o an admissible stress
field o® which satisfies equilibrium, traction continuity and boundary conditions, but not
compatibility, and define

Ug« = Uc(O'a) AUE = UC(O'G) - Uc(O' 0)

(19)
Ao® = o*—o° AT =T - T9
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It follows from (18, 19) that)
1
a __ a 0 it a a
AU, _vaa (so +aT)dV+2/vAa SAc®dV (20)

The parenthesis in the first integral is recognized as €® and therefore this integral may be
transformed by virtual work into

L AoV = f AT*%S + [ AT*u’dS (21)
S

Se
The integral (21) vanishes, the proof being entirely analogous to the one given for the van-
ishing of the second integral in (11). Therefore
AU = % [ Ao*sagtav = [ w(as")dv (22)
v :

This is a generalization of a similar result given in Hashin (1985) for the isothermal case.
Now define
AUC = Uc(a') - Uc(O'O) (23)

where o is the actual stress. Then as a special case of (22)

1
AUc =3 /V AoSAadV (24)

By the thermoelastic principle of minimum complementary energy
& = U3+ AUS > Ue = U + AUg

and therefore

AUS > AUg (25)

Recalling now the fracture process under fixed surface tractions described above, the
stress field for fracture surface S is identified as ¢° and the stress field for S, = S + AS.
as 0. Then it follows from (13,24) that

AUg = AT¢ | AUS > AT (26)

Thus (22) is an upper bound on the energy release AI'.

It should be noted that the proof given above is for the case when all cracks appear at
same surface load. The proof is easily extended to the case when cracks form progressively,
at different loads.
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Thermoelastic Analysis of Cracked Laminates

Application of the theory developed above to cracking of fiber composite laminates re-
quires stress analysis of a cracked laminate. The laminates to be considered here consist of
layers or plies which are unidirectional fiber composites. The present work is concerned with
the simple case of [02/90Z], laminates, also known as cross-ply laminates. This implies that
fiber directions are orthogonal, n and p are the number of plies in each layer and s stands
for symmetric which means that the midplane is & plane of symmetry. The manufacturing
temperature of the laminate may be identified as Tp and the room temperature isTo+T.
Thus T is a negative cooldown temperature change. The case to be considered is initial
cooldown of the laminate and subsequent loading by constant in-plane force N, fig.1.

Cooldown of such a laminate produces tensile stresses in transverse direction to the
fibers which may produce cracks along the fibers, in the 0° and 90° layers. Such crack
distributions have been considered in Hashin (1987) but for reasons of simplicity will not be
considered here as it would complicate the analysis considerably. It will thus be assumed
that cracks accumulate only with mechanical loading. Consequently such cracks, which are
called intralaminar cracks, appear only in the 90° layer, for the transverse stress oy, in the
0° layer for N, load is very small.

The usual assumption is made that the layers can be considered as anisotropic homo-
geneous with effective properties of the unidirectional fiber composite. Even with this sim-
plification rigorous analysis of the stress fields in such a cracked laminate does not appear
possible. Much of the work done has been based on the shear lag approximation. More accu-
racy has been achieved on the basis of variational analysis in terms of admissible stress. The
first such analysis for the present kind of cracked laminate and for isothermal condition has
been given in Hashin (1985). This analysis has been extended to loading after temperature
change in Nairn (1989). In the present work the thermoelastic analysis is reconsidered and
is presented in very simple form which is particularly convenient for evaluation of the energy
release.

The average stress applied to the laminate is

o= N,/2h (27)

When there are no cracks the stresses in each layer are constant, except for narrow edge
boundary strips, and the only surviving stresses in the present case are 02, and crgy. For

temperature change T and load (27) the stresses 0, in the different layers may be written
O —ogy=kio+rT 02 =0y=ko+rT (28)

! Oz




where the k and r coefficients depend on laminate geometry and material properties and the
labels 1,2 from now on indicate the 90° and 0° layers, respectively. The admissible stress
field is chosen as plane in the xz plane with 0z, stresses constant over layer thickness. Thus

0% = a1[l — ¢1(z)]
(29)

o3 = 091 — ()]

where ¢; and ¢, are unknown functions. Insertion of (29) into the section force equilibrium
condition in x direction yields the relation ¢y = —(t1/t2)$1. Identifying ¢1 as ¢ and using
the equilibrium equations, interlaminar traction continuity and external boundary conditions
[for details see Hashin (1985)] it follows that the admissible stress within a typical region
between two cracks, fig.2, is given as

Aogz = —01¢(z) Acgl = (01/N)(=)
Acg; = o1/ ()2 Aog? = (01/N)¢/ (z)(h — 2) (30)

Acgt = 01¢/(z)(ht1 — 2°) /2 Aog} = (01/A)¢" (z)(h — 2)*/2

Here A = ty/t;, primes denote x differentiation and conforming to previous notation the
stresses (30) must be added to the stress field 09 in the uncracked laminate to obtain the
admissible stress g°. Note that the 2z and 2z stresses are zero in the uncracked laminate.

Since normal and shear stress must vanish on crack surfaces = *a the function ¢ must
satisfy the boundary conditions

$p(xa)=1; ¢(+a)=0 : (31)

As in Hashin (1985), an optimal function ¢ is constructed by utilization of the principle
of minimum complementary energy. It follows from (19) that instead of minimizing Ug it is
sufficient to minimize (22). This requires the stress energy densities of the two layers with
respect to the z,y, z coordinate system in terms of the plane stresses (30). Both layers are
transversely isotropic with axis of symmetry y for layer 1 and z for layer 2. Therefore

2W1(0') = UL/ET - 2UmxaszT/ET + ng/ET + ng/GT

(32)
2W?2(0) = 02, /Ep — 204:0,.Va/Es + 0%, /Er+02,/G4

where the elastic ply properties in (32) are: E4 , v4 - axial Young’s modulus and associated
Poisson’s ratio; Ep , vr - transverse Young’s modulus and associated Poisson’s ratio;




G4 ,Gr - axial and transverse shear moduli. Then for the region —a <2 <aq; 0 <y < 1;
0<z2z<h,

AUZ = [ [ /0 " Wi (A dz + /th W2(Aa“2)dz] dz (33)

After the z integration is carried out minimization of the functional (33) becomes a
classical problem of the calculus of variations which results in an Euler-Lagrange differential
equation for the function ¢. Now it is evident from previous development that the variational
solution for the thermoelastic and isothermal elastic cases are mathematically identical.
Indeed the only difference between the two is the detailed form of (28) where in the first case
T # 0 and in the second T = 0. Thus the isothermal solution developed in Hashin (1985)
can immediately be used to write down the thermoelastic solution simply by interpreting oy
as (28). But before this is done it is necessary to take into account that intercrack distances
are of different sizes. Let it be assumed that the 90° layer, of length L in z direction, is
cracked into N pieces where any intercrack distance is denoted 2a,. Then the admissible
Ao* for the region of such length and height h is defined by (30) with boundary conditions

¢n(ﬂ:a’) =1, ¢:z (ia) =0 (34)

According to Hashin (1985) the Euler-Lagrange equation for ¢,, and associated boundary
conditions are

d'¢n , d’¢n

et +p de? +9¢. =0, ¢u(Epon) =1, ¢n(Lps) =0 (35)
where
§=z/t1, pa=anft;, p=(Coo~Cu)/Co, q=Co/Co (36)
_ _Mr oy 23 YA
Coo = 1/Er + 1/AE4 002_ET (A +3) 3EA’\
Coz = (A+1)(3N + 12X +8)/60Er Ciy = %(1 [Gr +1/3G.) (37)

This determines the functions ¢, and thus the admissible stresses. For present purpose
it is the quantity AUG which is of interest. As in Hashin (1985) this is given by

N N
AU = 3" AUE, = 03200 Y x(ps) (38)
n=1 n=1

where

x(€) = —¢"(¢) (39)

The characteristic equation of (35) is

M 4prP4q=0 (40)
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The form of x depends on the nature of the roots of (40). When these roots are complex, of
the form +(a + i), where i = 4/—1 ,then

Cosh(2ap,) — Cos(20py)

— e — 2, Q2

Xn = Xn = 20B(c” + F) aSin(2pp,) + BSinh(20p,) (41)
If the roots are real, thus of the form +o,+8 ,then
2 _ 2

£ (12)

Xn = X:; = COth(apn)/a — COth(ﬁpn)/ﬁ

Thus the form of the function x,, depends entirely on the material propertles and stacking
geometry of the layers.

Analysis of Laminate Cracking

When the laminate described above develops cracks over length L in z direction, and all
cracks appear simultaneously at external stress o, then the energy release per unit length in y
direction needed to open up these cracks is bounded from above by-(38). In view of previous
experience with cracked laminate energy calculation, Hashin (1985), it is expected that (38)
is an accurate approximation for the energy release. It is now assumed that there is a surface
energy -y per unit area along fibers, which is a material property of the unidirectional ply
material. Since by hypothesis the layer is broken into N pieces there are N — 1 cracks and
therefore AA. = (N — 1)t;1, per unit length in y direction and 0 < z < h. Then it follows
from (9, 38)

N
031022 Y X(pa) = (N = 1)y (43)
n=1

If, however, cracks initiate at some external average stress o; and develop progressively

as the external stress increases to o then it may be shown on the basis of the interpretation
of 17 for progressive cracking that 43 is modified to

[(0®—0)/E; +2(0 —0:)o3T 1h Y po+0itiCn Y x(pn) = (N — 1)y (44)

n=1 n=1
Since N is generally a large number, N — 1 may be replaced by N. Then (44) can be
written

(62— 0} /E: +2(0 — 03)T J(1 + Nt1 A +(k10 + 1 T)*t,Cop X= 1y (45)

where an overbar denotes mean value and E} o are the effective Young’s modulus and
thermal expansion coefficient, respectively, of the uncracked laminate in z direction.
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The numbers p, can be regarded as the values of a random variable p with probability
density function, (PDF), P(p). Then x can be expressed as

X = f P(p)x(p)dp (46)

The specific form of the PDF is of course not known and it would appear that the choice
should be based on experimental data. It may be assumed that the choice can be restricted
to those PDF which are specified by the first two moments of p, namely the mean p and the
standard deviation g and in that case X=X (P, ). The most commonly used geometrical
parameter for crack distribution is the crack density ¢ which is the number of cracks per unit
length, e.g. mm. Since the thickness of the cracked layer is 2¢; it follows that

ﬁ =1 / 2Ct1 (47)

Thus (45) is a relation between the input stress and temperature which produce the cracking,
the geometrical parameters of the crack distribution and the surface energy.

It is instructive and helpful to consider the extreme cases of small and large crack density
which are characterized by large and small j, respectively. A typical plot of the function
x(p) for a graphite/epoxy laminate, where the relevant form of x is (41), is shown in fig. 3.
The unidirectional material is T300 graphite fibers in fiberite 934 epoxy with fiber volume
fraction 0.55. The properties of the material are : E4 = 128GPa, FEr =8.44GPa, G4 =
3.85GPa, v4=0.3, vpr=0.35 a,=—0.5510"%/C% ar =35.91076/C°. It is seen that
the plot consists of a linear portion for a range 0 < p < py, a curved part and a horizontal
asymptote for a range p2 < p < 0o. Examination of such plots for a number of laminates
made of fiber composites with typical fiber volume fractions 0.5 — 0.6 has shown that in all
cases p; ~ 0.9; ps ~ 2.2. This also seems to be the case when x is of the form (42). The
nature of the plot is illuminated by series expansions of x near p = 0 and asymptotic forms
for large p. Thus for small p

Xﬁ — (Oz2 +,32)2[P— %p5 +0(p7)]

xi = (@8l - 2 1 o) (48)
And for large p
Xi £ 20(a® + F) {1 — 2¢***[Cos(26p) + 5 Sin(2Bp)]}
Xi & aflo+ Bl - =57 — ac™) (49)
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The sbsence of a p® term in (48) accounts for the substantial initial linear part of the
plot and the rapid decrease of the exponentials in (49) accounts for the asymptote.

The asymptotic part of the x curve is associated with crack initiation at stress o = o;.
In that case the term multiplying # in (45) vanishes and since the values of p are large the
negative exponentials in (49) are neglected.

This leads to the small crack density or crack initiation relations

(kyo: + r1T)22t,Cpoc(a? + B?) = X=X
(50)
(k10: + 11T)*t1Ca00B(a + B) = v X=X

According to previous discussion these relations should be valid when all or most p,
are larger than 2.2. The actual magnitude of small crack density is independent of crack
producing input 0;,T. Equ. (50) may be used to determine in-situ v when o; and T are
known.

It should be noted that the value p =~ 2.2, when x becomes flat, fig.3, does not imply
small crack density for the in-plane stress ol,. When the cracks are far apart this stress
builds up from zero on the crack surface to the value o', (28), in the uncracked laminate.
Stress variation for p = 2 has been given in Hashin (1985) and it is seen that in this case
there is strong crack interaction effect and o2, builds up only to about 0.30" midway between
cracks. The explanation is that g2, depends on ¢, see (29), while x = —¢". Therefore when
x is constant ¢ is cubic.

Discussion and Conclusion

Previous approaches, Nairn (1989) in terms of the 2-D variational solution, Laws and
Dvorak (1988) in terms of shear-lag solution, are different in the sense that it has been
attempted to consider the details of progressive development of the crack patterns in order
to evaluate at successive stages the energy releases needed to produce further cracking. This
may thus be termed a local approach. The fundamental question which arises is: given the
stress variation between two cracks which are distance 2a, apart. What is the probability
of appearance of a new crack at any in-between location ? But in reference to such a
question it is necessary to consider the micro-mechanism of transverse failure of a ply. There
is a distribution of flaws in the material which can take the form of small matrix cracks,
pores and fiber/matrix interface disbonds. The weakness of a flaw may be defined by the
magnitude of the stress which triggers it to develop an intralaminar crack. The weaker the
flaw the less stress is required to initiate a running crack at the flaw site. Flaws of different
weakness are randomly distributed along the layer ( z direction) while, by comparison, the
stress distribution between any two cracks may be assumed known and deterministic. Even
with the assumption that only the stress 05, and not the other components are involved
in the failure, the problem of local probability of failure seems intractable as nothing is
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known about the statistics of flaw distribution. Wang (1984) has considered effect of flaw
distributions by describing them as microcracks in the transverse yz plane, of size much
smaller than layer thickness, assuming normal PDF for crack size and spacing. But those
flaws were of necessity considered as classical cracks within the effective fiber composite, in
spite of the fact that their size may be only that of a single fiber, which negates the effective
property representation of their surroundings.

- The most simplistic past approach has been semi-deterministic in that it has been as-
sumed that a new crack will appear midway between cracks since this is the location of
largest ol,. This approach is of course unacceptable as it completely ignores the presence
of flaws. Nairn (1989) and Laws and Dvorak (1988) have adopted the more reasonable as-
sumption that the probability of failure at any location z is proportional to the magnitude
of 0},(z). However, the latter analysis is based on the unrealistic stress field of the shear
lag approximation and therefore the results obtained by Nairn should be much preferred
since they are based on the much more realistic stress field as determined by the variational
method.

The present approach is related to that of Nairn (1989) in that it is based on almost
the same stress analysis of a cracked laminate but there are important differences. The
approach may be termed global rather than local since no attempt has been made to follow
the complex process of development of cracks. It is only in the intermediate range of curved
X plot where crack geometry information beyond crack density c or equivalently 5 is needed,
and for this range it has been proposed to bring in the required additional information
through the standard deviation of normalized intercrack distance .

Another distinguishing feature of the method developed here is the expression of the
fracture criterion (8) in terms of stress only, (13, 16). This establishes, as has been shown,
that the expressions (45, 50) obtained for «y are rigorous upper bounds on this quantity. In
all of the relevant previous literature (5), (8), (9) have been used as the fracture condition.
"This requires the evaluation of displacements from an approximate stress solution, thus from
incompatible strains, and thus introduces additional approximation of uncertain magnitude.

The usually available information in the laminate cracking process is the input load o
and the crack density ¢ which determines 5. There is of course no fundamental difficulty to
determine p from section photographs. The input temperature change T is usually taken
as the difference between room temperature and the manufacturing temperature Ty of the
laminate. This is a problematic assumption for at Ty the laminate matrix is very soft and
may be viscoelastic rather than elastic. In view of the elastic behavior requirement of the
analysis it is better to define Ty as the temperature at which during the cooldown process

- the laminate becomes stiff enough to be considered elastic. This temperature is not easy

to determine directly and it would seem that it should be backed out by comparison of the
analytical results derived to experimental data of crack density versus applied load.

The most important physical property which must be determined is the surface energy per
unit area or critical energy release rate y. The simplest possibility is to regard <y as a material
constant for any specific unidirectional fiber composite layer, independent of layer thickness.
If so for a substantial range of crack density, about P 2 2.2 the crack density is independent
of input 0. Thus a plot of crack density (ordinate) versus o (abscissa) should start with a
vertical straight line for small to medium crack density. Extensive experiments of laminate
crack accumulation for a series of different laminates, made of different materials have been
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performed by Liu and Nairn (1992), and previously by Highsmith and Reifsnider (1982)
and Wang (1984). There are cases when initial crack density growth is load independent as
described above but in other cases initial crack density growth is accompanied by definite
increase in 0. A possible explanation for the latter phenomenon is again the distribution of
flaws in the material. As o is applied the more severe flaws will be activated first but higher
stress will be required to activate less severe flaws to result in cracks.

The theory developed should be compared to available experimental data. For this pur-
pose it is necessary to have crack density versus applied stress data for several different
laminates of different layup geometries (stacking sequence) made of the same layer unidi-
rectional material. The values of v and T must be backed out from such data with aid
of (50) for small crack density. Then verification consists of ability to represent the other
data which have not been used for 7, T determination with these values. Such verification
has been given by Liu and Nairn (1992) with reasonably good results on the basis of their
analysis. Fig. 4 shows crack densities versus load for 3 different laminates, as reported by
Liu and Nairn (1992), where the unidirectional material is composed of T300 graphite fibers
and Fiberite 934 epoxy matrix. The values of j , for the different laminates corresponding to
crack density ¢, (47), are shown near the experimental data of each laminate. It is seen that
for the [0/90], and [0/90,], laminates the experimental data are within the asymptotic flat
range of the x curve when crack density is independent of the value of applied stress, (50),
and the experimental data verify this , with some scatter. On the other hand the [0/90,],
data enter into the range of curved x when p < 2.2 and it is seen that these data deviate
substantially from a vertical straight line. The calculations where performed with the values
T = —160°,« = 1000 Joule/m. Detailed verification of experimental results, in particular
for progressive cracking, is deferred to the future.
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Fig. 1 - Laminate with 909 Layer cracked
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INTERFACE DEBOND ANALYSIS
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Interface Debond Analysis

Introduction

Interface debonding in composite materials is a problem of great importance. Formation
of interfacial cracks not only reduces the stiffness of composites, but also produces sig-
nificant local stress concentrations which may result in appearance of microcracks and,
in consequence, produce catastrophic failure.

In this connection two central questions are under discussion in the present chapter:

1. What applied mechanical and temperature loads produce interface debonding in

composite materials 7

2. What parameters of a composite (such as volume fraction of inclusions, inclusion
size and thermoelastic properties of phases) should be chosen to prevent interface

debonding under given load input ?

As an answer to these questions we have to obtain a fracture criterion which will relate

phases and interface properties and other details of the composite structure to critical




loads and temperature. A thermoelastc fracture criterion developed by HASHIN [22] is
found to be successfully applicable for the above-mentioned purposes. In this section the
metho_g_i will be briefly outlined.

Céﬁsider a brittle elastic composite material body, subjected to an external mechani-
cal load T(S) and a homogeneous temperature change ¢, which may be applied simulta-
neously or sequentially. Because of thermal expansion mismatch, the temperature change
produces residual stresses in the composite and the mechanical load leads to mechanical
stresses appearance resulting in stresses 0. Initial formation of internal cracks may have
occurred due to temperature change and/or load, and their surface is denoted S,o. Now
consider the possibility of spontaneous formation of additional cracks for the same surface
load T(S). Then the stress field changes to & and the final crack surface is denoted S..
When the new crack surface AS, = 5. — Sg of area AA, forms without change of the

surface load, AT(S) = 0, the external energy change is
AU® = /TAu ds (4.1)
5

The internal mechanical energy change can be defined in terms of stress energy with
density W

W(o) :%a So (4.2)

The internal energy change can be written as
AU = / AW dV = / [W(e) — W(s0)]dV. (4.3)
v v

If an additional energy of amount AL is required to open up the new crack surface, then
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the criterion for new crack formation is given by the energy balance
AU® = AU“ + AT* (4.4)

where AT is the critical energy release. It may be assumed that there exists a material

surface energy per unit area of crack opening v , in which case
AT® =y AA° (4.5)

where 7 is the analogue of the critical energy release rate which is usually defined as

the derivative of the energy release with respect to crack area. It can be shown from

(4.1)-(4.4) that the critical energy release can bé expressed entirely in terms of internal
i stresses (see HASHIN [22]):

. 1
Are = J Ac S Ac dV (4.6)

For following applications this criterion can be transformed to integration over cracks

surface. We can rewrite it as

Al =

AaSAade-;—/AaAst
174

AT AudS (4.7)

DL == DN

/
/

Note, that according to the assumption that the traction on existing cracks remains zero,




the integration must be evaluated only over surfaces of newly developed cracks. Thus

AL = % | AT Auds (4.8)
AS.
or
1 1
AT® = 5 l (T‘— T°) (u-u®) dS = 3, l T° (u — ) dS (4.9)

The surface integral for each crack is confined to the two congruent crack surfaces and

thus each component of the normal appears twice, with opposite signs (nt = —n~, see
Figure 4.1).
Therefore
c 1 (s} 0 . 1 04 + 0
AT® = —§/T (w-w) ds=—5 [ T (u*-v’) S
ASe ast
1 o—(.— .0
-5 [ T (w-u0) ds
Se
_ 1 0 (= .+ _1 0
= 3 / T (u"—u*) dS = 5 / TO [u] dV (4.10)
Ast Ast

where [u] is the displacement jump across the crack surface,known as crack opening

displacement (COD), and the integration must be evaluated once. By means of index

crack faces

Figure 4.1: Crack faces.
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notation (4.10) may be rewritten in the following form

'yAAC——-% / oom; [ui] dS (4.11)

AS.

By this is meant that the energy release can be expressed in terms of stresses in an
undamaged material in the cracks’ locations and displacements of the crack’ faces (COD),
of course, after development of the cracks. It should be noted here that kinetic energy

associated with the dynamics of crack growth has been neglected.

4.2 Fiber Reinforced Materials under Transverse Load

Generally speaking, for a statistically homogeneous material body, location of new cracks
and magnitude of applied forces or temperature which lead to crack appearance depend
on loading conditions. For example, small concentrated forces or local heating may

produce microcracks in bounded areas around them. In order to define the critical

loading conditions as composite material properties, we assume here that the material
remains statistically homogeneous after formation of the cracks .

Consider an infinite unidirectional fiber reinforced composite material body subjected
to a homogeneous temperature change ¢ and an external applied homogeneous traction
T:(S) = &in; in the plane normal to the fibers. For effective transverse isotropy, o;;
may be chosen in the principal coordinate system 611 = 01, 922 = 03, 012 = 0 which,
if required, can be separated to hydrostatic part p = (&1 + 03) /2 and deviatoric part

7 = (61 — 3) /2. Then the tensile radial stresses in the interface between the matrix

and the fibers may produce interfacial debonding around certain fibers. The further




Figure 4.2: Fiber reinforced material under transverse load.

consideration will be restricted to the case of perfect debond, when there is no contact
area between phases after development of the interfacial cracks, and the fiber surface
is free from traction. For cylindrical' surface of fibers it is convenient to consider the
problem in polar coordinates. Then only the radial component of n does not vanish on

the interface (see Fig.4.2), and (4.11) can be rewritten in the form:

7AA, = % / {a?r (uﬁ"‘) - uﬁf)) + 0%, (ugm) - ugf))}dS (4.12)
AS.

where m denotes the matrix and f denotes the fiber. Thus we need to solve two problems:
first, we have to find the radial 02, and shear o9 stresses in the interface between the
matrix and fibers before these fibers will separate from the matrix, and second, the

displacements of the matrix ugm) and the separated fibers ugf ) surfaces.




4.3 An Isolated Fiber in an Infinite Matrix

For one isolated fiber or dilute concentration of fibers when the interaction between fibers
is negligible, the interfacial stress and strain fields may be described precisely. Consider
first the case of perfect bond. The general two-dimensional plane strain solution in polar

coordinates for transverse isotropic elastic phases assumes the following forms.

1. For isotropic load p and temperature input ¢:

u, = (B +C/p*) g (413)

Orr = 2kB — 2GC/[p? — 2kayp
where k is the transverse bulk modulus, G is the transverse shear modulus, « is
the thermal expansion coefficient, r = r/a where a is the radius of the fiber and B,

C are constants which may be found from the following boundary conditions:

The boundary condition on the external surface  o{™(r — 00) =p
The displacement is continuous on the interface  u{™ (a) = v/ (a) (4.14)

The traction is continuous on the interface o™ (a) = olf) (a)

The additional condition C; = 0 is needed to avoid singularity at r = 0.




2. For shear component 7:

u, = (Ap® + B+ C/p* + D/p*) r sin 26;

1
up = (1‘2—-'-——£-Ap2 + B+ ——C/p*— Dp*)r cos20;
1-¢ 1+£ (4.15)
2
Opr = 2G(B - m()/pz - 3D/p4) sin20;
3 2 1 2 4
_ 20.
Oro 2G‘(1_£Ap + B+ 1_}_fC'/p +3D/p*) cos

Here { = G/k , A, B, C and D are constants, which again may be found from the

boundary conditions at infinity and continuity at r = a :

aﬁ’,")(r — 00) = T sin 26;

0‘(93‘)(,. — 00) = 7 cos 20;

ul™(a,8) = ulf)(a,6); (4.16a)
.16a.

u§™(a,0) = uf™(a,0);

aﬁ’,")(a, 0) = 0{)(a,0);

'5)(a,0) = 013 (a,0)
and Cy = Dy = 0 to avoid singularity at r = 0.

Note here that according to the well known result of Eshelby, the stress field in an isolated
fiber embedded in an infinite body under homogeneous traction is also homogeneous,
and thus we can obtain from (4.15d) that A; = 0, and the six equations (4.16a) may
be reduced to five. The same may be directly obtained from solution of (4.16a). The
solution of three linear equations (4.14) for By, A, B and any five linear equations

from (4.16a) for By, Am, Bm, Cm and D,, yields the following expressions for interfacial




stresses and.displacements:

ol = ¢&p+gq,7sin20+q¢%;
0% = q,7cos20;
(4.17)
u = (Pp+1T7sin20 + lf¢)a;
u) = [jTacos20;

where ¢,,, ¢,+, I and [ are the interfacial stresses o,,, 0,5 and the interface displacements
u,, ug respectively due to a unit loading input, the nature of which is noted by superscript
index: the hydrostatic pressure p, the shear stress 7 and the temperature ¢. These

coeflicients are functions of the matrix and fiber properties only:

PRPLE L S P s
rr g+£f’ rr rd 1+g(1+2£m)’ (418)
(am — o)
$=2Gm )
t g g+¢&s
and
lp_—:__é_‘j_.}_j:_éﬂ.l‘r:l-r:i 1+€m .
T 2Gm gt+é" T YT Gm L+ 9(1+26) (4.19)
s
I =af+ Qa — Ay );
f g+§f( f)

where g = G5 /G-

After the crack development o,, and o,4 vanish on the interface and this situation
may be simply obtained from (4.18) by substituting Gy = ks = 0, thus assuming a void
instead of a fiber. Analogously the displacements of the matrix surface may be obtained

from (4.19) by putting Gy = kf = 0 . This leads to the following expressions for the




.

matrix surface displacements (4.19¢,d):

u? = (IPp + I775in 20 + [¥p)a;

ud = I3 a cos 26,

with new coefficients:

1 1
P==(1+&n) I:ZIZ)-:.G_(I + &m)

2G.. (4.20)

The fiber surface freely expands due to temperature change, so ugf ) = 0and uﬁf ) = azap.
It results in the crack opening displacement!:

[u,] = {IPp + 77 5in 20 + (o — 5)} a5
(4.21)

[us] = lfTa cos 26.

Now replacing p and 7 by (03 4 03)/2 and (01 — 03)/2 respectively and substituting (4.17)
and (4.21) into the debond criterion (4.12) with help of AA, = 27aH and dS, = a H db,

where H is the length of the fiber, one can obtain:

A(o-fcr + o-gcr) + B(a‘m - af)z(lozr =+ zcalcr;f%r

2
+2D (am - af)(alcr + 0-2c‘r)ﬂocr = —a’z (422)

1Generally speaking, the separated fiber can move freely in the formed pseudovoid. But this has no
influence on the inner elastic energy and hence may be omitted from consideration.
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where A, B, C, D depend on the elastic properties of the matrix and fiber:

_g(1+5m)2[ 1 1 ]
4=756, liwre) Tirearz)’
B=2Gm———————g_ff;
f
C..g(l+£m)2[ 1 1 ] “29)
T 2G.  |4(g+&) 1+g(1+26)]]
2 (g+¢&)

The formula (4.22) relates the critical external forces and temperature change which
produce interface debond, to phases properties, the critical ene;fgy release rate v and fiber
radius. The parameter -y is most probably controlled by chemical bond effectiveness, the
fiber surface treatment and process of composite fabrication.

In spite of the fact that interfacial stresses do not depend on the fiber radius, the
critical loads and associated critical stresses in the interface decrease with increasing
of the fiber size, which means that fibers of larger radius are more sensitive to crack
formation. Moreover, it follows that for a given external mechanical load and temperature
there is a critical fiber size above which cracks will first appear and it can be calculated
from (4.22). Not<.e here that these conclusions are in conflict with the concept of ultimate
stress which is a property of material, but not of geometry. According to the present
approach, although the magnitudes of the stresses are independent of fiber size, the total
stress energy depends on the volume of material under the influence of these stresses,
which in turn, depends on the fiber size. That is, the larger the fiber radius, the larger
the stressed volume both within and around the fiber, and thus, the larger the stress
energy that is associated with the fiber (quadratic in the radius). The same may be said

about the stress energy change due to debonding. On the other hand, the energy release
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is linearly proportional to the crack area, and consequently to the fiber radius. It follows
from here that for a larger fiber size, smaller stresses are required for the stress energy

change to reach its critical value and for a crack to appear.

4.4 Arbitrary Concentration of Fibers

The above result leads us to conclude that in the case of arbitrary concentration of
fibers, pseudovoids may form in a gradual manner according to the size distribution of
fibers. After the first groups of ﬁl:;ers produce cracks in the interface around them under
increasing load and temperature, the phase constitution of the composite changes: the
third phase, pseudovoids, appears in the places of debonded fibers. Further increase of
loads will cause new interfacial cracks to appear and hence the volume fraction of the
fibers will decrease and the pseudovoids volume fraction will increase. This process of
voids formation may continue until all fibers separate from the matrix, or in other words,
the volume fraction of the voids is equal to the initial volume fraction of the fibers. Now
the composite again contains two phases: the matrix and the pseudovoids instead of the
fibers.

We restrict the following consideration to the particular case when all fibers have
the same radius ¢ and they separate from the matrix under the same external load
and temperature. In order to use the criterion (4.12) the generalized self consistent
scheme approximation (GSCS) will be applied to calculate the interfacial stresses and
displacements for two extreme cases: a matrix with embedded fibers of volume fraction
v,, and a matrix containing yoids of the same volume fraction v,. In spite of the fact that

the interface displacements and stresses obtained in framework of GSCS are approximate,
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Figure 4.3: Generalized self consistent scheme (GSCS).

the energy change may be described in terms of changes of the effective thermoelastic
moduli, which in turn agree very well with experimental data.

The essence of the GSCS is that in order to determine the stress and strain fields in
the phases, the composite is represented as a composite cylinder, consisting of a fiber core
and a matrix concentric shell, embedded in an infinite homogeneous material to which
the effective properties are assigned. The radii of the fiber a and the matrix shell b are
chosen in such a manner that (a/ b)* = vy, which is to say that the volume fraction of the
fiber in the composite cylinder is equal to the volume fraction of fibers in the composite
material (see Fig.4.3).

When this structure is subjected to a homogeneous temperature change ¢ and/or
hydrostatic tension p is applied to the external surface, the stress field in material (0)
and consequently on the composite cylinder surface is homogeneous (6@ = p), and
thus, the traction may be applied immediately to the cylinder surface (r =b). Thisis

consistent with the fact that the GSCS approximation gives precisely the same result for
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the effective bulk modulus £* as obtained by the composite cylinder assemblage (CCA),
according to which the composite cylinder described above behaves just as a homogeneous
transvg_rsal isotropic cylinder with the plane bulk modulus £*. The foregoing is incorrect
in the case of a transverse shear input 7, because then the traction on the composite
cylindric surface does not remain homogeneous under a homogeneous external traction.
For more details about GSCS and CCA see CHRISTENSEN [30].

Thus, the CCA in the case of a hydrostatic tensile load and temperature, and the
GSCS for the transverse shear will be used for the required interfacial stresses and dis-
placements. Then the general elastic solutions (4.13) and (4.15) are valid with new

boundary conditions:

1. Uncracked composite under hydrostatic load and temperature (CCA)

dQB)=p
W (@) = ™ (0 (124

o) (a) = o™ (a)

and for pseudovoids
o) =p

o) (a) =0

(4.25)

Inserting equations (4.13) into (4.24) we obtain three linear equations for unknown
coefficients By, By, and Cy, (again Cy = 0 to avoid singularity at r = 0). The

solution results the following expression for interface stress

0 kf (Gm + km)
Tpr = p
V1kn(Go + ky) + 02k (G + ki)
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+ 2Gmkmkf (%51
Ulkm(Gm + kf) + ’Uzkf(Gm + km

)(am —o)p (4.26)

After crack formation, recalling that u; = ajap, which means free expansion of
~ fiber due to temperature change, equations (4.25) give us the desired COD

o = | St 4 2 - )] (427)

2. For the undamaged composite subjected to pure shear (GSCS) the boundary con-

ditions are

o@(r — o0) = 75in 26,
afg)(r — 00) = 7 cos 26,
uy)(a’ 0) = usm)(aa 9),
(.f)(a 0) = u(m)(a 0),
Uﬁm) (6,0) = u1(-0) (b, 6),
(4.28)
uf™ (5,0) =’ (5,0),
c)(a,8) = 0(™(a,6),
(f)(a 0) - (;n)(&) 0))
o (b,0) = o (6,0),
(m) (b,6) = (0) Db, 6)
with the additional restriction C; = Dy = 0 to avoid singularity at r = 0. Compar-

ing equations (4.28a,b) to (4.15¢,d) it is seen that

Ao =0, By=

2G*
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The insertion of (4.15) into (4.28) yields eight linear algebraic equations for the
eight unknown coefficients: Ay, By, Am, Bm, Cm, D, Co and Dy. In addition,

CHRISTENSEN & Lo [29] have proved that

Co=0

This precise condition has been found on the basis of the assumption that the
average strain energy density of an embedded composite cylinder is equal to the
average strain energy density of the composite material. Hence, the set of eight
linear equations (4.28c)—(4.28;j) gives G* as well as the stress field in the interface

between the fiber and the matrix, which can be written in the form

0 _
Orr =

g7, 7 sin26 .
(4.29)

0% = g7y T cos 20

In a similar manner, the COD may be obtained when a crack formed in the interface.

In this case the continuity conditions at r = a (4.28¢,d,g,h) must be replaced with

o7(a,0) =0

o5 )(a,8) =0

which means that the inner surface of the matrix shell is free from traction. Solution




of these six linear equations gives

[u,] = I] asin 26

(4.30)
[ug] = 15 acos 260

Superposition of (4.26), (4.27), (4.29) and (4.30) yields the following expressions for

the required interfacial stresses and COD

USr = ¢’ p+ql.7sin20+ ¢%.¢;
0% = q47cos20;
(4.31)
] = {Bp+1I75in20+ (am — af)p} g
[ug] = G acos20;

where ¢7., ¢¥, and [? are defined by (4.26) and (4.27), and g7, ¢7p, I7, I5 are obtained
from solution of GSCS equations as described above.
Substituting (4.31) into criterion (4.12) and evaluating the integration over all fibers’

surfaces, one can obtain

A(o-?cr + agcr) + B(am - af)z‘)"zr + 2calcr02cr

2
+2D (@ — a5 )(01er + O2er)Per = ~al (4.32)

where coefficients A, B, C' and D are functions of the elastic properties of phases and

the volume fraction of the fibers.
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4.5 Numerical Results and Conclusions

The criterion (4.32) can be rewritten in the form
F(01ery02ersPer) = 1 (4.33)

where F(01¢r,0¢r, Per) is @ quadratic polynomial function of critical applied stresses and
temperature, which tend to perfect debond in the interfaces

F(01er, 020, 00r) = A ((‘%)2 + (‘%-)2) + B(am — ay)? (‘0‘”)2 (4.34)

c

0 (%) (%) +20t0n—en) (% + 2) (%)

c C

and ¢ = y/2v/a. In (01,03, ¢) space (4.33) builds a second order surface which we will
call the "DEBOND SURFACE”.

In the (o1,02) pléne the curve F(oyer,02r,0) = 1 is an ellipse (Fig.4.4b) with the
semimajor axis tilted at an angle /4 to the axes o, and o3. The values of the ellipse
semiaxes may be evaluated ny substituting oy, = 0, for the semimajor axis (which cor-
responds to hydrostatic tension 2p., = 01¢r = 02r), and 01,r = —09., for the semiminor
axis (for pure shear 27, = 01¢r = —02¢r)-

Thus, if the point (oy,02) which represents the current loading conditions is inside
the ellipse, then there are no interfacial cracks in the material. Otherwise, if the loading
path reach the ellipse surface, the energy release becomes enough to produce the interface
debond.

For the most important case, when oy < am , kf > ki, and G5 > G,,, the temper-
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ature ¢ scarcely changes the values of the semiaxes, but it has influence on the ellipse
center position. When the temperature increases ¢ > 0, the critical stresses decrease
and thF ellipse moves into the third quarter of the (oy,0;) plane along the line oy = o,.
Corivéfsely, the ellipse center moves into the first quarter of the (oy,032) plane along the
line o7 = 03 when ¢ < 0. In both these cases the ellipse remains symmetric around the
lines o7 = 03 and 0y = —oy + 2h, where 07 = 02 = h is the center of the ellipse. The
three-dimensional debond surface is shown schematically in Fig.4.4a. It is obviously seen
that the surface presents an elliptic cylinder tilled to the (oy,03) plane.

The debond surfaces (01¢r, 02y ) for various volume fractions of fibers v, and temper-

atures ¢ are shown in Fig.4.5 and Fig.4.6. The constituent properties used are:

Epoxy as matrix Glass as fibers
E,, = 0.4 10°psi E; =10.5 10°psi
Vm = 0.35 vy =0.20
ay, =30 107°F 1 oy =2.810"¢°F
It is interesting to note, that the ellipse moving along the line o; = oy resembles the
phenomenon of kinematic hardening, and the increasing of the ellipse semiaxes’ values
with fiber volume fraction decreasing is similar to isotropic hardening, which are both
well known from the theory of plasticity. Of course, in the present problem this occurs
for completely different reasons.
It should be noted here that not all points of the ellipses correspond to possible phys-
ical situations. For example, hydrostatic pressure and cooling can not produce interfacial

cracks, because in this case the radial stresses in the interface are negative. In order to
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exclude this type of problems, we have to require that

[u] 20 (4.35)

for all angles 6, in such a way that there is no contact area between the matrix and the
fibers (perfect debond), or in other words, the cracks’ surfaces must be free of tractions.
Substituting the expressions for COD (4.31¢c,d) into this inequality we obtain the ranges
of critical stresses and temperatures that satisfy (4.35). The points of the debond surfaces
which are inside these ranges are shown in Fig.4.5 and Fig.4.6 in black.

All the above leads us to the following most important conclusions:

1. The smaller the fiber radius that is chosen duriug fabrication of the composite, the
larger the critical external applied loads and temperature which produce interface
debond. For a given load and temperature input, the maximal allowable fiber radius

can be estimated from the criterion (4.32).

2. As can be seen from Fig.4.5, composites with larger volume fraction of fibers are

more susceptible to interface debond.

3. Decreasing the temperature does increase the critical mechanical loads, see Fig.4.6.
This means that residual thermal stresses can prevent interface separation. On the
other hand, in the case of overcooling, the appearance of positive tangential stresses

in the matrix may produce matrix cracking, which is desirable to be avoided.

4. It may be assumed that the critical energy release rate «, which can be found by

experimental approach, is a property of the interface, but not of the volume fraction

20




of fibers or fiber radius. The higher the strength of interface between matrix and

fibers, the larger the loads that must be applied to produce the interface failure.

These results may be used in design of fiber reinforced composite materials to prevent

the interface separation and improve the composite’s overall strength.
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: Debond surface.

Figure 4.4
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Figure 4.5: Debond surfaces for various volume fractions of fibers.
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Figure 4.6: Debond surface for various temperature.
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CONCLUSION

The research investigations presented in this report have been concerned with the
effect of microcrack distributions on the thermoelastic response of composites and with
prediction of the development of such microcracks. The underlying philosophy may be
termed micromechanics of damage. This implies that defects such as cracks are explicitly
recognized as internal surfaces on which the tractions vanish. This in contrast to
continuum damage mechanics where damage is described as some mathematical entity
(not uniquely defined ) which involves parameters to be determined by suitable
experiments. Micromechanics of damage is mathematically more difficult but it’s great
advantage is in that it is clearly connected to the physics and geometry of the problems
considered and it can yield results of universal validity as has been demonstrated in the
studies presented here. The prediction of damage in the form of crack densities is a
particularly important problem and it is believed that such efforts should be continued.




